Published online by Cambridge University Press: 23 September 2020
Quantifying tree biomass is an important research and management goal across many disciplines. For species that exhibit predictable relationships between structural metrics (e.g. diameter, height, crown breadth) and total weight, allometric calculations produce accurate estimates of above-ground biomass. However, such methods may be insufficient where inter-individual variation is large relative to individual biomass and is itself of interest (for example, variation due to herbivory). In an East African savanna bushland, we analysed photographs of small (<5 m) trees from perpendicular angles and fixed distances to estimate above-ground biomass. Pixel area of trees in photos and diameter were more strongly related to measured, above-ground biomass of destructively sampled trees than biomass estimated using a published allometric relation based on diameter alone (R2 = 0.86 versus R2 = 0.68). When tested on trees in herbivore-exclusion plots versus unfenced (open) plots, our predictive equation based on photos confirmed higher above-ground biomass in the exclusion plots than in unfenced (open) plots (P < 0.001), in contrast to no significant difference based on the allometric equation (P = 0.43). As such, our new technique based on photographs offers an accurate and cost-effective complement to existing methods for tree biomass estimation at small scales with potential application across a wide variety of settings.