Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T22:55:10.320Z Has data issue: false hasContentIssue false

Sample size and appropriate design of fruit and seed traps in tropical forests

Published online by Cambridge University Press:  01 January 2008

Pablo R. Stevenson*
Affiliation:
CIEM, Departamento de Ciencias Biológicas, Universidad de los Andes. Cr. 1a No. 18A-10. Bogotá, Colombia
Ivonne N. Vargas
Affiliation:
CIEM, Departamento de Ciencias Biológicas, Universidad de los Andes. Cr. 1a No. 18A-10. Bogotá, Colombia
*
1Corresponding author. Email: [email protected]

Abstract:

Studies of seed dispersal and fruit production often use fruit traps. Different trap designs may give dissimilar estimates; however, prior to this study there has been no tropical forest field comparison of trap designs. Likewise, there are no recommendations about the number of traps required to assess ecological parameters, such as fruit production, mass and number of seeds dispersed, and number of plant species producing fruits. We compared the effectiveness of five trap designs in terms of fruit/seed bouncing out of traps, wind effects, area effects and seed removal by predators. These studies took place in Colombia in two tropical rain forests and in laboratory conditions. We found that 300 traps (0.085 m2 each) were not enough to obtain stable estimates in two out of four parameters (number of species and dispersed seeds). All estimates were highly variable when using fewer than 100 traps. All trap designs evaluated (mesh on PVC frame, hanging mesh, basin and funnel traps) prevent seed removal by predators, in sharp contrast with removal from the ground. Mesh traps were less affected by bouncing effects than plastic traps, and this factor was a large source of bias among estimates from different traps. Since up to 68% of dry mass may bounce out, it is important to consider adequate trap designs and to be careful when comparing studies using different methodologies. Small traps received fewer seeds per area, however area affects were not evident when bouncing effects were controlled for. We recommend the use of mesh traps on PVC frames, although hanging mesh traps are a good option in tropical forests without strong winds.

Resumen:

Los estudios de dispersión de semillas y producción de frutos frecuentemente utilizan trampas. Diferentes diseños de trampa pueden aportar estimativos distintos, pero esto no ha sido evaluado en bosques tropicales y tampoco hay recomendaciones sobre el número de trampas requerido para cuantificar producción de frutos, biomasa y número de semillas dispersadas, y número de especies de plantas representadas. Comparamos la efectividad de 5 diseños, en términos de efectos de rebote, área de recolección y remoción por viento y por animales. Estos estudios se hicieron en Colombia en dos bosques húmedos tropicales y en condiciones de laboratorio. Trescientas trampas de 0.085 m2 no fueron suficientes para conseguir estimativos estables en dos de los cuatro parámetros evaluados (número de especies y de semillas dispersadas). Encontramos que todos los estimativos son muy variables cuando se usan menos de 100 trampas. Todos los diseños de trampa (malla con estructura de PVC, malla colgante, platón y embudo) evitan de manera similar la remoción por parte de animales, en contraste con la alta remoción en el suelo. Las trampas de malla fueron menos afectadas por efectos de rebote que las trampas de plástico, y estas diferencias alteran substancialmente los estimativos de producción. Ya que hasta un 68% de la masa seca puede rebotar, es importante considerar cuales son los mejores diseños de trampa y ser cuidadoso en el momento de comparar estudios que usan diferentes métodos. Encontramos menos semillas por unidad de área en trampas pequeñas, pero el efecto de área de recolección no fue significativo al tener en cuenta los efectos de rebote. Recomendamos el uso de trampas de malla con estructura de PVC para estudios en bosques tropicales, aunque las trampas de malla colgante son una buena opción en lugares sin vientos fuertes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AU, A. Y. Y., CORLETT, R. T. & HAU, B. C. H. 2006. Seed rain into upland plant communities in Hong Kong, China. Plant Ecology 186; 1322.CrossRefGoogle Scholar
CHABRERIE, O. & ALARD, D. 2005. Comparison of three seed trap types in a chalk grassland: toward a standardised protocol. Plant Ecology 176:101112.Google Scholar
CHAPMAN, C. A., WRANGHAM, R. & CHAPMAN, L. J. 1994. Indexes of habitat wide fruit abundance in tropical forests. Biotropica 26:160171.CrossRefGoogle Scholar
DEFLER, T. R. & DEFLER, S. B. 1996. Diet of a group of Lagothrix lagothricha lagothricha in southeastern Colombia. International Journal of Primatology 17:161190.CrossRefGoogle Scholar
GIBSON, D. J. 2002. Methods in comparative plant population ecology. Oxford University Press, Oxford. 344 pp.Google Scholar
HAMRICK, J. L. & GODT, M. J. W. 1996. Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society of London, Series B 351:12911298.Google Scholar
HARMS, K. E., WRIGHT, S. J., CALDERON, O., HERNANDEZ, A. & HERRE, E. A. 2000. Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404:493495.CrossRefGoogle Scholar
HUBBELL, S. P., FOSTER, R. B., O'BRIEN, S. T., HARMS, K. E., CONDIT, R., WECHSLER, B., WRIGHT, S. J. & DE LAO, S. L. 1999. Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283:554557.Google Scholar
IZHAKI, I. & WALTON, P. B. 1991. Seed shadows generated by frugivorous birds in an Eastern Mediterranean scrub. Journal of Ecology 79:575590.CrossRefGoogle Scholar
JACKSON, J. F. 1981. Seed size as a correlate of temporal and spatial patterns of seed fall in a neotropical forest. Biotropica 13:121130.CrossRefGoogle Scholar
JORDANO, P. & GODOY, J. A. 2002. Frugivore-generated seed shadows: a landscape view of demographic and genetic effects. Pp. 305322 in Levey, D. J., Silva, W. R. & Galetti, M. (eds.). Seed dispersal and frugivory: ecology, evolution, and conservation. CABI Publishing, Wallingford.Google Scholar
KOLLMANN, J. & GOETZE, D. 1998. Notes on seed traps in terrestrial plant communities. Flora 193:3140.CrossRefGoogle Scholar
MULLER-LANDAU, H. C., WRIGHT, S. J., CALDERON, O., HUBBELL, S. P. & FOSTER, R. B. 2002. Assessing recruitment limitation. Concepts, methods and case-studies from a tropical forest. Pp. 3553 in Levey, D. J., Silva, W. R. & Galetti, M. (eds.). Seed dispersal and frugivory: ecology, evolution, and conservation. CABI Publishing, Wallingford.Google Scholar
NATHAN, R. & MULLER-LANDAU, H. C. 2000. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology and Evolution 15:278285.CrossRefGoogle ScholarPubMed
NRC (National Research Council) 1981. Techniques for the study of primate population ecology. National Academy Press, Washington. 233 pp.Google Scholar
NORTON-GRIFFITHS, M. 1975. The numbers and distribution of large mammals in Ruaha National Park, Tanzania. East African Wildlife Journal 13: 121140.CrossRefGoogle Scholar
PAGE, M. J., NEWLANDS, L. & EALES, J. 2002. Effectiveness of three seed trap designs. Australian Journal of Botany 50:587594.CrossRefGoogle Scholar
PARRADO-ROSSELLI, A., MACHADO, J. S & PRIETO-LOPEZ, T. 2006. Comparison between two methods for measuring fruit production in a tropical forest. Biotropica 38:15.Google Scholar
SCHUPP, E. W., MILLERON, T. & RUSSO, S. 2002. Dissemination limitation and the origin and maintenance of species-richness in tropical forests. Pp. 1733 in Levey, D. J., Silva, W. R. & Galetti, M. (eds.). Seed dispersal and frugivory: ecology, evolution, and conservation. CABI Publishing, Wallingford.Google Scholar
SILMAN, M. R. 1996. Regeneration from seed in a neotropical rain forest. Ph.D. thesis. Duke University, Durham, North Carolina.Google Scholar
SMYTHE, N. 1970. Relationships between fruiting seasons and seed dispersal methods in a neotropical forest. The American Naturalist 104:2536.CrossRefGoogle Scholar
STEVENSON, P. R. 2002. Frugivory and seed dispersal by woolly monkeys at Tinigua National Park, Colombia. Ph.D. thesis, State University of New York at Stony Brook.Google Scholar
STEVENSON, P. R., LINK, A. & RAMIREZ, B. H. 2005. Frugivory and seed fate in Bursera inversa (Burseraceae) at Tinigua Park, Colombia: implications for primate conservation. Biotropica 37:431438.CrossRefGoogle Scholar
STEVENSON, P. R., QUIÑONES, M. J. & AHUMADA, J. A. 1998. Annual variation in fruiting pattern using two different methods in a lowland tropical forest, Tinigua National Park, Colombia. Biotropica 30:129134.CrossRefGoogle Scholar
STEVENSON, P. R., QUIÑONES, M. J. & CASTELLANOS, M. C. 2000. Guía de frutos de los bosques del Río Duda, La Macarena, Colombia. Asociación para La Defensa de La Macarena – IUCN (The Netherlands), Santafé de Bogotá.Google Scholar
TERBORGH, J. 1983. Five New World primates. Princeton University Press, Princeton. 260 pp.Google Scholar
TERBORGH, J., PITMAN, N., SILMAN, M., SCHICHTER, H. & NUÑEZ, P. 2002. Maintenance of tree diversity in tropical forests. Pp. 117 in Levey, D. J., Silva, W. R. & Galetti, M. (eds.). Seed dispersal and frugivory: ecology, evolution, and conservation. CABI Publishing, Wallingford.Google Scholar
WRIGHT, S. J., CARRASCO, C., CALDERON, O. & PATON, S. 1999. The El Niño Southern Oscillation variable fruit production and famine in a tropical forest. Ecology 80:16321647.Google Scholar
ZHANG, S. & WANG, L. 1995. Comparison of three fruit census methods in French Guiana. Journal of Tropical Ecology 11:281294.Google Scholar