Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T12:27:15.306Z Has data issue: false hasContentIssue false

Salinity constrains size inequality and allometry in two contrasting mangrove habitats in the Gulf of Mexico

Published online by Cambridge University Press:  13 February 2012

Rodrigo Méndez-Alonzo
Affiliation:
Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701 Col. Ex-Hacienda de San José de La Huerta, Morelia, Michoacán, 58190, México
Humberto Hernández-Trejo
Affiliation:
División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco. Carretera Villahermosa-Cárdenas Km. 0.5 S/N Entronque a Bosques de Saloya, Villahermosa, Tabasco, 86150México
Jorge López-Portillo*
Affiliation:
Red de Ecología Funcional, Instituto de Ecología, A. C., Carretera antigua a Coatepec 351, Xalapa Veracruz, 91070México
*
1Corresponding author. Email: [email protected]

Abstract:

The competition for resources increases size inequality in trees, particularly under low abiotic stress. Because mangrove communities are subject to site-specific salinity (and therefore abiotic stress) gradients, these habitats should differ in height–diameter allometry and size inequality. The size inequality (by the Gini Coefficient, G) and maximum potential height (Hmax from a height–diameter asymptotic model) were determined within the mangrove forest of a coastal lagoon in Veracruz, Mexico in 20 0.25-ha plots, 10 in interdistributary basins (IBs, lower salinity) having Avicennia germinans, Laguncularia racemosa and Rhizophora mangle and 10 in mudflats (MFs, higher salinity) dominated by A. germinans. Size inequality was significantly higher in IBs (G = 0.59 ± 0.02 vs. 0.39 ± 0.03). Due to their significant intercorrelation G, total basal area and density were synthesized in one PCA axis accounting for 67% of total variance and inversely correlated with salinity (R = −0.65, P = 0.003). The height–diameter scaling model reached a stable asymptote (Hmax range: 16–21 m; coefficient of variation CV: 7.7) in IBs, suggesting that trees can still increase their diameter after achieving maximum height. In MFs, no stable asymptote was reached (Hmax range: 11–26 m; CV: 32.5), suggesting a lower growth rate of diameter in the MF trees when compared with IB trees.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AUSTIN, M. P. 1985. Continuum concept, ordination methods and niche theory. Annual Review of Ecology and Systematics 16:3961.CrossRefGoogle Scholar
BAGCHI, S. 2007. Relationship between size hierarchy and density of trees in a tropical dry deciduous forest of western India. Journal of Vegetation Science 18:389394.CrossRefGoogle Scholar
BAUER, S., WYSZOMIRSKI, T., BERGER, U., HILDENBRANDT, H. & GRIMM, V. 2004. Asymmetric competition as a natural outcome of neighbour interactions among plants: results from the field-of-neighbourhood modelling approach. Plant Ecology 170:135145.CrossRefGoogle Scholar
CORLETT, R. T. 1986. The mangrove understory: some additional observations. Journal of Tropical Ecology 2:9394.CrossRefGoogle Scholar
DAMGAARD, C. & WEINER, J. 2000. Describing inequality in plant size or fecundity. Ecology 81:11391142.CrossRefGoogle Scholar
FALSTER, D. S. & WESTOBY, M. 2003. Plant height and evolutionary games. Trends in Ecology and Evolution 18:337343.CrossRefGoogle Scholar
GLANTZ, S. A. 2005. Primer of biostatistics. (Sixth edition). McGraw Hill Professional, New York. 490 pp.Google Scholar
HERNÁNDEZ-TREJO, H. 2009. Efecto de las perturbaciones naturales y antropógenas en la estructura del manglar de La Mancha, Veracruz. Ph.D. dissertation, Instituto de Ecología, A.C., México. 115 pp.Google Scholar
HIKOSAKA, K. & HIROSE, T. 2001. Nitrogen uptake and use by competing individuals in a Xanthium canadense stand. Oecologia 126:174181.CrossRefGoogle Scholar
HUCKLE, J. M., POTTER, J. A. & MARRS, R. H. 2000. Influence of environmental factors on the growth and interactions between salt marsh plants: effects of salinity, sediment and waterlogging. Journal of Ecology 88:492505.CrossRefGoogle Scholar
JANZEN, D. H. 1985. Mangroves: where's the understorey? Journal of Tropical Ecology 1:8992.CrossRefGoogle Scholar
KOCH, G. W., SILLETT, S. C., JENNINGS, G. M. & DAVIS, S. D. 2004. The limits to tree height. Nature 428:851854.CrossRefGoogle ScholarPubMed
KUMARA, M. P., JAYATISSA, L. P., KRAUSS, K. W., PHILLIPS, D. H. & HUXMAN, M. 2010. High mangrove density enhances surface accretion, surface elevation change, and tree survival in coastal areas susceptible to sea-level rise. Oecologia 164:545553.CrossRefGoogle ScholarPubMed
LÓPEZ-HOFFMAN, L., ANTEN, N. P. R., MARTÍNEZ-RAMOS, M. & ACKERLY, D. D. 2007. Salinity and light interactively affect neotropical mangrove seedlings at the leaf and whole plant levels. Oecologia 150:545556.CrossRefGoogle ScholarPubMed
LÓPEZ-PORTILLO, J. & EZCURRA, E. 1989. Response of three mangroves to salinity in two geoforms. Functional Ecology 3:355361.CrossRefGoogle Scholar
LUGO, A. E. 1980. Mangrove ecosystems: successional or steady state? Biotropica 12:6572.CrossRefGoogle Scholar
LUGO, A. E. & SNEDAKER, S. C. 1974. The ecology of mangroves. Annual Review of Ecology and Systematics 5:3964.CrossRefGoogle Scholar
MARQUARDT, D. W. 1963. An algorithm for least squares estimation of parameters. Journal of the Society of Industrial and Applied Mathematics 11:431441.CrossRefGoogle Scholar
MÉNDEZ-ALONZO, R., LÓPEZ-PORTILLO, J. & RIVERA-MONROY, V. H. 2008. Latitudinal variation in leaf and tree traits of the mangrove Avicennia germinans (Avicenniaceae) in the central region of the Gulf of Mexico. Biotropica 40:449456.CrossRefGoogle Scholar
MÉNDEZ-LINARES, A. P., LÓPEZ-PORTILLO, J., HERNÁNDEZ-SANTANA, J. R., ORTIZ-PÉREZ, M. A. & OROPEZA-OROZCO, O. 2007. The mangrove communities in the Arroyo Seco deltaic fan, Jalisco, Mexico, and their relation with the geomorphic and physical-geographic zonation. Catena 27:127142.CrossRefGoogle Scholar
MOLES, A. T., WARTON, D. I., WARMAN, L., SWENSON, N. G., LAFFAN, S. W., ZANNE, A. E., PITMAN, A., HEMMINGS, F. A. & LEISHMAN, M. R. 2009. Global patterns in tree height. Journal of Ecology 97:923932.CrossRefGoogle Scholar
NAGASHIMA, N., TERASHIMA, I. & KHATO, S. 1995. Effects of plant density on height distributions in Chenopodium album stands: analysis based on continuous monitoring of height growth of individual plants. Annals of Botany 75:173180.CrossRefGoogle Scholar
NAIDOO, G. 2006. Factors contributing to dwarfing in the mangrove Avicennia marina. Annals of Botany 97:10951101.CrossRefGoogle ScholarPubMed
NAIDOO, G. 2010. Ecophysiological differences between fringe and dwarf Avicennia marina mangroves. Trees – Structure and Function 24:667673.CrossRefGoogle Scholar
NIKLAS, K. J. & SPATZ, H. C. 2004. Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass. Proceedings of the National Academy of Sciences USA 101:1566115663.CrossRefGoogle ScholarPubMed
NORD-LARSEN, T., DAMGAARD, C. & WEINER, J. 2006. Quantifying size-asymmetric growth among individual beech trees. Canadian Journal of Forest Research 36:418425.CrossRefGoogle Scholar
POORTER, L., HAWTHORNE, W., BONGERS, F. & SHEIL, D. 2008. Maximum size distributions in tropical tree communities: relationships with rainfall and disturbance. Journal of Ecology 96:495504.CrossRefGoogle Scholar
RYAN, M. J. & YODER, B. J. 1997. Hydraulic limits to tree height and growth. Bioscience 47:235242.CrossRefGoogle Scholar
SCOTT, D. W. 1979. On optimal and data-based histograms. Biometrika 66:605610.CrossRefGoogle Scholar
SCHWINNING, S. & WEINER, J. 1998. Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113:447455.CrossRefGoogle ScholarPubMed
SHERMAN, R. E., FAHEY, T. J. & BATTLES, J. J. 2000. Small-scale disturbance and regeneration dynamics in a neotropical mangrove forest. Journal of Ecology 88:165178.CrossRefGoogle Scholar
SONE, K., SUZUKI, A. A., MIYAZAWA, S. I., NOGUCHI, K. & TERASHIMA, I. 2009. Maintenance mechanisms of the pipe model relationship and Leonardo da Vinci's rule in the branching architecture of Acer rufinerve trees. Journal of Plant Research 122:4152.CrossRefGoogle Scholar
THOM, B. G. 1967. Mangrove ecology and deltaic geomorphology: Tabasco, Mexico. Journal of Ecology 55:301342.CrossRefGoogle Scholar
THOMAS, S. C. 1996. Asymptotic height as predictor of growth and allometric characteristics in Malaysian rainforests. American Journal of Botany 83:556566.CrossRefGoogle Scholar
TURNER, I. M., GONG, W. K., ONG, J. E., BUJANG, J. S. & KOHYAMA, T. 1995. The architecture and allometry of mangrove saplings. Functional Ecology 9:205212.CrossRefGoogle Scholar
TWILLEY, R. R. & RIVERA-MONROY, V. H. 2009. Ecogeomorphic models of nutrient biogeochemistry for mangrove wetlands. Pp. 641–683 in Perillo, G. M. E., Wolanski, E., Cahoon, D. R. & Brinson, M. M. (eds.). Coastal wetlands: an integrated ecosystem approach. Elsevier, Amsterdam.Google Scholar
VAN KUIJK, M., ANTEN, N. P. R., OOMEN, R. J., VAN BENTUM, D. W. & WERGER, M. J. A. 2008. The limited importance of size-asymmetric light competition and growth of pioneer species in early secondary forest succession in Vietnam. Oecologia 157:112.CrossRefGoogle ScholarPubMed
WEINER, J. 1990. Asymmetric competition in plant populations. Trends in Ecology and Evolution 5:360364.CrossRefGoogle ScholarPubMed
WEINER, J. & FRECKLETON, R. P. 2010. Constant final yield. Annual Review of Ecology, Evolution and Systematics 41:173192.CrossRefGoogle Scholar
WEINER, J. & SOLBRIG, O. 1984. The meaning and measurement of size hierarchies in plant populations. Oecologia 61:334336.CrossRefGoogle ScholarPubMed
WEST, G. B., ENQUIST, B. & BROWN, J. H. 2009. A general quantitative theory of forest structure and dynamics. Proceedings of the National Academy of Sciences USA 106:70407045.CrossRefGoogle ScholarPubMed
WESTOBY, M., FALSTER, D. S., MOLES, A. T., VESK, P. A. & WRIGHT, I. A. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33:125159.CrossRefGoogle Scholar
WICHMANN, L. 2001. Annual variations in competition symmetry in even-aged Sitka spruce. Annals of Botany 88:145151.CrossRefGoogle Scholar