Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-30T21:56:33.641Z Has data issue: false hasContentIssue false

The pollination ecology of two species of Parkia (Mimosaceae) in southern Thailand

Published online by Cambridge University Press:  01 September 2008

Sara Bumrungsri*
Affiliation:
Department of Biology, Prince of Songkla University, Hat-Yai, Songkhla, Thailand90112
Andrew Harbit
Affiliation:
School of Biological Sciences, University of Aberdeen, Aberdeen, UK
Charles Benzie
Affiliation:
School of Biological Sciences, University of Aberdeen, Aberdeen, UK
Kristine Carmouche
Affiliation:
School of Biological Sciences, University of Aberdeen, Aberdeen, UK
Kitichate Sridith
Affiliation:
Department of Biology, Prince of Songkla University, Hat-Yai, Songkhla, Thailand90112
Paul Racey
Affiliation:
School of Biological Sciences, University of Aberdeen, Aberdeen, UK
*
1Corresponding author. Email: [email protected]

Abstract:

Although the floral traits of Parkia conform to the bat-pollination syndrome, many visitors other than bats have been observed at their flowers. Some chiropterophilous plants are also pollinated by other animals; the syndrome is therefore best regarded as a hypothesis for which field observations and pollination experiments are required. The present study aimed, for the first time, to determine the breeding system of the economically important canopy trees, Parkia speciosa and P. timoriana, and to identify their pollinators. Pollination experiments carried out in Trang and Songkhla Provinces, in 28 trees of P. speciosa and four P. timoriana indicated that they are self incompatible. Open pollination resulted in the highest fruit set (average 60–67% of inflorescences per tree) although this was not significantly different from hand-crossed pollination (48–60%). Insect pollination resulted in fruit set in only 12% of P. speciosa inflorescences. Fruit bats, mainly Eonycteris spelaea, visit flowering plants continuously from dusk till after midnight. Nocturnal and diurnal insects (moths and stingless bees respectively) visit capitula, mostly at the nectar zone. Nectarivorous bats are the most effective pollinator for P. speciosa and P. timoriana. The fact that populations of E. spelaea appear to be declining throughout their distribution is therefore a matter of increasing concern.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALLEN-WARDELL, G., BERNHARDT, P., BITNER, R., BURQUEZ, A., BUCHMANN, S., CANE, S., COX, P. A., DALTON, V., FEINSINGER, P., INGRAM, M., INOUYE, D., JONES, C. E., KENNEDY, K., KEVAN, P., KOOPOWITZ, H., MEDELLIN, R., MEDELLIN-MORALES, S., NABHAN, G. P., PAVLIK, B., TEPEDINO, V., TORCHIO, P. & WALKER, S. 1998. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conservation Biology 12:817.Google Scholar
BAKER, H. G. 1960. The adaptation of flowering plants to nocturnal and crepuscular pollinators. Quarterly Review of Biology 36:6473.Google Scholar
BAKER, H. G. & HARRIS, B. J. 1957. The pollination of Parkia by bats and its attendant evolutionary problems. Evolution 11:449460.CrossRefGoogle Scholar
BAWA, K. S. 1990. Plant-pollinator interactions in tropical rain forests. Annual Reviews of Ecology and Systematics 21:399422.CrossRefGoogle Scholar
BAWA, K. S., PERRY, D. R. & BEACH, J. H. 1985. Reproductive biology of tropical lowland rain forest trees. I. Sexual systems and self-incompatibility mechanisms. American Journal of Botany 72:331345.CrossRefGoogle Scholar
BIRKINSHAW, C. R. & COLQUHOUN, I. 1998. Pollination of Ravenala madagascariensis and Parkia madagascariensis by Eulemur macaco in Madagascar. Folia Primatologica 69:252259.CrossRefGoogle ScholarPubMed
BUMRUNGSRI, S. & RACEY, P. A. 2007. Resource partitioning in sympatric Cynopterus brachyotis (Muller, 1838) and C. sphinx (Vahl, 1797) (Chiroptera: Pteropodidae) in lowland tropical rain forest, Thailand. Biotropica 39:241248.CrossRefGoogle Scholar
BUMRUNGSRI, S., SRIPAORAYA, E. & LEELATIWONG, C. 2006. A quantitative analysis of plant community structure in an abandoned rubber plantation on Kho-Hong Hill, southern Thailand. Songklanakharind Journal of Science and Technology 28:479491.Google Scholar
CHITTKA, L., THOMSON, J. D. & WASER, N. M. 1999. Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86:361377.CrossRefGoogle Scholar
CORBET, G. B. & HILL, J. E. 1992. The mammals of the Indomalayan Region: a systematic review. Oxford University Press, Oxford. 496 pp.Google Scholar
CRUDEN, R. W. 2000. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31:3246.CrossRefGoogle Scholar
FAEGRI, K. & Van Der PIJL, L. 1979. The principles of pollination ecology. Pergamon Press, Oxford. 242 pp.Google Scholar
FLEMING, T. H. & SOSA, V. J. 1994. Effects of nectarivorous and frugivorous mammals on reproductive success of plants. Journal of Mammalogy 75:845851.CrossRefGoogle Scholar
FLEMING, T. H., SAHLEY, C. T., HOLLAND, J. N., NASON, J. D. & HAMRICK, J. L. 2001. Sonoran desert columnar cacti and the evolution of generalized pollination systems. Ecological Monograph 71:511530.CrossRefGoogle Scholar
GOULD, E. 1978. Foraging behavior of Malaysian nectar-feeding bats. Biotropica 10:184193.CrossRefGoogle Scholar
GRIBEL, R., GIBBS, P. E. & QUEIROZ, A. 1999. Flowering phenology and pollination biology of Ceiba pentandra (Bombacaceae) in central Amazonia. Journal of Tropical Ecology 15:247263.CrossRefGoogle Scholar
GRÜNMEIER, R. 1990. Pollination by bats and non-flying mammals of African tree Parkia bicolor (Mimosaceae). Memoirs of the New York Botanical Garden 55:83104.Google Scholar
HEIDEMAN, P. D. 1987. The reproductive ecology of a community of Philippine fruit bats (Pteropodidae: Megachiroptera). Unpublished Ph.D thesis. University of Michigan, Michigan, USA. 334 pp.Google Scholar
HEITHAUS, E. R. 1982. Coevolution between bats and plants. Pp. 327367 in Kunz, T. H. (ed.). Ecology of bats. Plenum Press, New York, USA. 425 pp.CrossRefGoogle Scholar
HEITHAUS, E. R., OPLER, P. A. & BAKER, H. G. 1974. Bat activity and pollination of Bauhinia pauletia: plant pollinator coevolution. Ecology 55:412419.CrossRefGoogle Scholar
HOPKINS, H. C. F. 1983. The taxonomy, reproductive biology and economic potential of Parkia (Leguminosae: Mimosoideae) in Africa and Madagascar. Botanical Journal of the Linnean Society 87:135167.CrossRefGoogle Scholar
HOPKINS, H. C. F. 1984. Floral biology and pollination ecology of the neotropical species of Parkia. Journal of Ecology 72:123.CrossRefGoogle Scholar
HOPKINS, H. C. F. 1994. The Indo-Pacific species of Parkia (Leguminosae: Mimosoideae). Kew Bulletin 49:181234.CrossRefGoogle Scholar
HOPKINS, H. C. F. 1998. Bat pollination and taxonomy in Parkia (Leguminosae: Mimosoideae). Pp. 3155 in Hopkins, H. C. F., Huxley, C. R., Pannell, C. M., Prance, G. T. & White, F. (eds.) The biological monograph. The importance of field studies and functional syndromes for taxonomy and evolution of tropical plants. Continental Printing, Surrey. 248 pp.Google Scholar
HOPKINS, M. J. G., HOPKINS, H. C. F. & SOTHERS, C. A. 2000. Nocturnal pollination of Parkia velutina by Megalopta bees in Amazonia and its possible significance in the evolution of chiropterophily. Journal of Tropical Ecology 16:733746.CrossRefGoogle Scholar
HOWELL, D. J. 1977. Bats and pollen: physiological aspects of the syndrome of chiropterophily. Comparative Biochemistry and Physiology A 48:263276.Google Scholar
IBARRA-CERDEÑA, C. N., IÑIGUEZ-DÁVALOS, L. I. & SÁNCHEZ-CORDERO, V. 2005. Pollination ecology of Stenocereus queretaroensis (Cactaceae), a chiropterophilous columnar cactus, in a tropical dry forest of Mexico. American Journal of Botany 92:503509.CrossRefGoogle Scholar
JOHNSON, S. D. & STEINER, K. E. 2000. Generalization versus specialization in plant pollination systems. Trend in Evolution and Ecology 15:140143.CrossRefGoogle ScholarPubMed
KEVAN, P. G. & PHILLIPS, T. P. 2001. The economic impacts of pollinator declines: an approach to assessing the consequences. Conservation Ecology 5:119.CrossRefGoogle Scholar
KITCHENER, D. J., GUNNELL, A. & , MAHARADATUNKASI. 1990. Aspects of the feeding biology of fruit bats (Pteropodidae) on Lombok Island, Nusa Tenggara, Indonesia. Mammalia 54:561578.CrossRefGoogle Scholar
KRESS, W. J. & BEACH, J. H. 1994. Flowering plant reproductive systems. Pp. 161182 in McDade, L. A., Bawa, K. S., Hespenheide, H. A. & Hartshorn, G. S. (eds.). La Selva ecology and natural history of a neotropical rain forest. The University of Chicago Press, Chicago.Google Scholar
LIM, T. K. & LUDERS, L. 1998. Durian flowering pollination and incompatibility studies. Annals of Applied Biology 132:151165.CrossRefGoogle Scholar
LUCKOW, M., & HOPKINS, H. C. F. 1995. A cladistic analysis of Parkia (Leguminosae: Mimosoideae). American Journal of Botany 82:13001320.CrossRefGoogle Scholar
MARSHALL, A. G. 1983. Bats, flower and fruit: evolutionary relationships in the old world. Biological Journal of the Linnean Society 20:115135.CrossRefGoogle Scholar
MICKLEBURGH, S. P., HUTSON, A. M. & RACEY, P. A. 1992. Old World fruit bats – an action plan for their conservation. IUCN, Gland. 256 pp.CrossRefGoogle Scholar
MOLINA-FREANER, F. & EGUIARTE, L. E. 2003. The pollination biology of two paniculate agaves (Agavaceae) from northwestern Mexico: contrasting roles of bats as pollinators. American Journal of Botany 90:10161024.CrossRefGoogle Scholar
MOMOSE, K., YUMOTO, T., NAGAMITSU, T., KATO, M., NAGAMUSU, H., SAKAI, S., HARRISON, R. D., ITIOKA, T., HAMID, A. A. & ANDINOUE, T. 1998. Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia I. Characteristics of the plant-pollinator community in a lowland dipterocarp forest. American Journal of Botany 85:14771501.CrossRefGoogle Scholar
NIELSEN, C. & SANTISUK, T. 1985. Parkia. Flora of Thailand 4:134138.Google Scholar
OLLERTON, J. 1998. Sunbird surprise for syndromes. Nature 394:726727.CrossRefGoogle Scholar
RAMIREZ, N. 2004. Pollination specialization and time of pollination on a tropical Venezuelan plain: variations in time and space. Botanical Journal of the Linnean Society 145:116.CrossRefGoogle Scholar
SOEPADMO, E. & EOW, B. K. 1976. The reproductive biology of Durio zibethinus Murr. Gardens’ Bulletin, Singapore 29:2533.Google Scholar
START, A. N. 1974. The feeding biology in relation to food sources of nectarivorous bats (Chiroptera: Macroglossinae) in Malaysia. Unpublished PhD Thesis, University of Aberdeen. 247 pp.Google Scholar
START, A. N. & MARSHALL, A. G. 1976. Nectarivorous bats as pollinators of trees in West Malaysia. Pp. 141150 in Burley, J. & Styles, B. T. (eds.) Tropical trees: variation, breeding and conservation in tropical forest trees. Academic Press, London.Google Scholar
WASER, N. W., CHITTKA, L., PRICE, M. V., WILLIAMS, N. M. & OLLERTON, J. 1996. Generalization in pollination systems, and why it matters. Ecology 77:10431060.CrossRefGoogle Scholar
WEE, Y. C. & RAO, A. N. 1980. Anthesis and variations in the floral structure of Parkia javanica. The Malayan Forester 43:493499.Google Scholar
WONGCHANA, S., WUNNACHIT, W. & BUMRUNGSRI, S. 2006. Floral structure, sex expression and fruit set of stinkbean (Parkia speciosa Hassk.). Thai Agricultural Research Journal 24:2033. (in Thai with English abstract)Google Scholar