Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T20:10:05.708Z Has data issue: false hasContentIssue false

Nodulation dynamics and nodule activity in leguminous tree species of a Mexican tropical dry forest

Published online by Cambridge University Press:  01 January 2008

Teresa González-Ruiz*
Affiliation:
Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Col. Santo Tomás, México, D.F., C.P. 11340, México
Víctor J. Jaramillo*
Affiliation:
Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, A.P. 27-3 Sta. María de Guido, Morelia, Mich., C.P. 58090, México
Juan José Peña Cabriales
Affiliation:
Laboratorio de Microbiología Ambiental, Departamento de Biotecnología y Bioquímica, Centro de Investigación y Estudios Avanzados, Campus Guanajuato, km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, Gto., México
Arturo Flores
Affiliation:
Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Col. Santo Tomás, México, D.F., C.P. 11340, México
*
*Corresponding author. Email: [email protected]

Extract

Biological N fixation by symbiotic micro-organisms plays a key role in making atmospheric N largely available to other organisms and nodule formation by rhizobia in roots of many legume species represents a very important pathway (Postgate 1998). Estimates of the contribution of symbiotic fixation to total N content in soils range from 44 to 200 Tg y−1 (Bøckman 1997).

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALLEN, O. N. & ALLEN, E. K. 1981. The Leguminosae: a source book of characteristics, uses and nodulation. University of Wisconsin Press, Madison. 812 pp.CrossRefGoogle Scholar
ALTAMIRANO-HERNÁNDEZ, J., FARÍAS-RODRÍGUEZ, R., JARAMILLO, V. J. & PEÑA-CABRIALES, J. J. 2004. Seasonal variation in trehalose contents of roots and nodules of leguminous trees in a tropical deciduous forest in Mexico. Soil Biology and Biochemistry 36:869871.CrossRefGoogle Scholar
BINKLEY, D. & GIARDINA, C. 1997. Nitrogen fixation in tropical forest plantations. Pp. 297337 in Nambiar, E. & Brown, G. (eds.). Management of soil, nutrients and water in tropical plantation forests. Australian Center for International Agriculture Research, Scientific Industrial Research Organization, Center for International Forestry Research, Canberra.Google Scholar
BØCKMAN, O. 1997. Fertilizer and biological nitrogen fixation as sources of plant nutrients: perspectives for future agriculture. Plant and Soil 194:1114.CrossRefGoogle Scholar
BREWBAKER, J. L., WILLERS, K. B. & MACKLIN, B. 1990. Nitrogen fixing trees: validation and prioritization. Nitrogen Fixing Tree Research 8:816.Google Scholar
CASTELLANOS, J., JARAMILLO, V. J., SANFORD, R. L. & KAUFFMAN, J. B. 2001. Slash-and-burn effects on fine root biomass and productivity in a tropical dry forest ecosystem in Mexico. Forest Ecology and Management 148:4150.CrossRefGoogle Scholar
COTLER, H., DURÁN, E. & SIEBE, C. 2002. Caracterización morfo-edafológica y calidad de sitio de un bosque tropical caducifolio. Pp. 1779 in Noguera, F. A., Vega-Rivera, J. H., García-Aldrete, A. N. & Quesada-Avendaño, M. (eds.) Historia natural de Chamela. Universidad Nacional Autónoma de México, México, D.F.Google Scholar
CREWS, T. E. 1999. The presence of nitrogen fixing legumes in terrestrial communities: evolutionary vs ecological considerations. Biogeochemistry 46:233246.CrossRefGoogle Scholar
DAVIDSON, E. A., MATSON, P. A., VITOUSEK, P. M., RILEY, R., DUNKIN, K., GARCÍA-MÉNDEZ, G. & MAASS, M. 1993. Processes regulating soil emissions of NO and N2O in a seasonally dry tropical forest. Ecology 74:130139.CrossRefGoogle Scholar
DE FARIA, S., LEWIS, G., SPRENT, J. & SUTHERLAND, J. 1989. Occurrence of nodulation in the leguminosae. New Phytologist 111:607619.CrossRefGoogle ScholarPubMed
DREVON, J. 1995. Como evaluar la actividad de la nitrogenasa de nódulos de leguminosas utilizando la técnica de reducción de acetileno. Organización de las Naciones Unidas para la Agricultura y la Alimentación (ed.). Manual Técnico de la Fijación Simbiótica de Nitrógeno: Leguminosa/Rhizobium. Roma.Google Scholar
DURÁN, E., BALVANERA, P., LOTT, E., SEGURA, G., PÉREZ-JIMÉNEZ, A., ISLAS, A. & FRANCO, M. 2002. Estructura, composición y dinámica de la vegetación. Pp. 443472 in Noguera, F. A., Vega-Rivera, J. H., García-Aldrete, A. N. & Quesada-Avendaño, M. (eds.) Historia natural de Chamela. Universidad Nacional Autónoma de México, México, D.F.Google Scholar
ESPAÑA, M., CABRERA-BISBAL, E. & LÓPEZ, M. 2006. Study of nitrogen fixation by tropical legumes in acid soil from Venezuelan savannas using 15N. Interciencia 31:197201.Google Scholar
FRIONI, L., DODERA, R., MALATÉS, D. & IRIGOYEN, I. 1998. An assessment of nitrogen fixation capability of leguminous trees in Uruguay. Applied Soil Ecology 7:271279.CrossRefGoogle Scholar
GARCÍA-MÉNDEZ, G., MAASS, M., MATSON, P. A. & VITOUSEK, P. M. 1991. Nitrogen transformations and nitrous oxide flux in a tropical deciduous forest in Mexico. Oecologia 88:362366.CrossRefGoogle Scholar
GARCÍA-OLIVA, F., MAASS, M. & GALICIA, L. 1995. Rainstorm analysis and rainfall erosivity of a seasonal tropical region with a strong cyclonic influence on the Pacific coast of Mexico. Journal of Applied Meteorology 34:24912498.2.0.CO;2>CrossRefGoogle Scholar
GENTRY, A. 1995. Diversity and floristic composition of neotropical dry forests. Pp. 146190 in Bullock, S. H., Mooney, H. A. & Medina, E. (eds.). Seasonally dry tropical forests. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
HALLIDAY, J. 1984. Register of nodulation reports for leguminous trees and other arboreal genera with nitrogen fixing members. Nitrogen Fixing Tree Research Reports 2:3845.Google Scholar
HÖGBERG, P. & ALEXANDER, I. J. 1995. Roles of root symbioses in African woodland and forest: evidence from 15N abundance and foliar analysis. Journal of Ecology 83:217224.CrossRefGoogle Scholar
JARAMILLO, V. J. & SANFORD, R. L. 1995. Nutrient cycling in tropical deciduous forests. Pp. 346361 in Bullock, S. H., Mooney, H. A. & Medina, E. (eds). Seasonally dry tropical forests. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
JARAMILLO, V. J., KAUFFMAN, J. B., RENTERÍA-RODRÍGUEZ, L., CUMMINGS, D. L. & ELLINGSON, L. E. 2003. Biomass, C, and N pools in Mexican tropical dry forest landscapes. Ecosystems 6:609629.CrossRefGoogle Scholar
LOTT, E. 1993. Annotated checklist of the vascular flora of the Chamela bay region, Jalisco, Mexico. Occasional Papers of the California Academy of Sciences 148:160.Google Scholar
MURPHY, P. & LUGO, A. E. 1995. Dry forests of Central America and the Caribbean islands. Pp. 934 in Bullock, S. H., Mooney, H. A. & Medina, E. (eds). Seasonally dry tropical forests. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
PEARSON, H. & VITOUSEK, P. M. 2002. Soil phosphorus fractions and symbiotic nitrogen fixation across a substrate-age gradient in Hawaii. Ecosystems 5:587596.CrossRefGoogle Scholar
POSTGATE, J. 1998. Nitrogen fixation. Cambridge University Press, Cambridge. 112 pp.Google Scholar
RÄSÄNEN, L. A., ELVÄNG, A. M., JANSSON, J. & LINDSTRÖM, K. 2001. Effect of heat stress on cell activity and cell morphology of the tropical rhizobium, Sinorhizobium arboris. FEMS Microbiology Ecology 34:276278.CrossRefGoogle ScholarPubMed
RENTERÍA, L. Y., JARAMILLO, V. J., MARTÍNEZ-YRÍZAR, A. & PÉREZ-JIMÉNEZ, A. 2005. Nitrogen and phosphorus resorption in tree species of a Mexican tropical dry forest. Trees 19:431441.CrossRefGoogle Scholar
SAUR, S., BONHÊME, I., NYGREN, P. & IMBERT, D. 1998. Nodulation of Pterocarpus officinalis in the swamp forest of Guadeloupe (Lesser Antilles). Journal of Tropical Ecology 14:761770.CrossRefGoogle Scholar
SOMASEGARAN, P. & HOBEN, H. 1985. The acetylene reduction method for measuring nitrogenase activity. Pp. 320327 in International Network of Legume Inoculation Trials (ed.). Methods in legume-Rhizobium technology. Niftal, MIRCEN, Hawaii.Google Scholar
SPRENT, J. 2001. Nodulation in legumes. Royal Botanic Gardens, Kew. 146 pp.Google Scholar
SPRENT, J., GEOGHEGAN, I., WHITTY, P. & JAMES, E. 1996. Natural abundance of 15N in nodulated legumes and other plants and the cerrado and neighbouring regions of Brazil. Oecologia 105;440446.CrossRefGoogle ScholarPubMed
TEIXEIRA, F. C. P., REINERT, F., RUMJANEK, N. G. & BODDEY, R. M. 2006. Quantification of the contribution of biological nitrogen fixation to Cratyllia mollis using the 15N natural abundance technique in the semi-arid Caatinga region of Brazil. Soil Biology and Biochemistry 38:19891993.CrossRefGoogle Scholar
VITOUSEK, P. M. 1984. Litterfall, nutrient cycling, and limitation in tropical forests. Ecology 65:109123.CrossRefGoogle Scholar
VITOUSEK, P. M. & SANFORD, R. L. 1986. Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics 17:137167.CrossRefGoogle Scholar
ZAHRAN, H. H. 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews 63:968969.CrossRefGoogle Scholar
ZAHRAN, H. H. 2001. Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation, and biotechnology. Journal of Biotechnology 9:143153.CrossRefGoogle Scholar
ZURDO-PIÑEIRO, J. L., VELÁZQUEZ, E., LORITE, M. J., BRELLES-MARIÑO, G., SCHÖRODER, E. C., BEDMAR, E. J., MATEOS, P. F. & MARTÍNEZ-MOLINA, E. 2004. Identification of fast-growing rhizobia nodulating tropical legumes from Puerto Rico as Rhizobium gallicum and Rhizobium tropici. Systematic and Applied Microbiology 27:469477.CrossRefGoogle ScholarPubMed