Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T21:21:23.033Z Has data issue: false hasContentIssue false

Nectar volume is positively correlated with flower size in hummingbird-visited flowers in the Brazilian Atlantic Forest

Published online by Cambridge University Press:  03 June 2016

Davi Castro Tavares*
Affiliation:
Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil
Leandro Freitas
Affiliation:
Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Maria Cristina Gaglianone
Affiliation:
Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil
*
1Corresponding author. Email: [email protected]

Abstract:

We studied the relationship between flower size and nectar properties of hummingbird-visited flowers in the Brazilian Atlantic Forest. We analysed the nectar volume and concentration as a function of corolla length and the average bill size of visitors for 150 plant species, using the phylogenetic generalized least squares (PGLS) to control for phylogenetic signals in the data. We found that nectar volume is positively correlated with corolla length due to phylogenetic allometry. We also demonstrated that larger flowers provide better rewards for long-billed hummingbirds. Regardless of the causal mechanisms, our results support the hypothesis that morphological floral traits that drive partitioning among hummingbirds correspond to the quantity of resources produced by the flowers in the Atlantic Forest. We demonstrate that the relationship between nectar properties and flower size is affected by phylogenetic constraints and thus future studies assessing the interaction between floral traits need to control for phylogenetic signals in the data.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ARAÚJO, F. P., SAZIMA, M. & OLIVEIRA, P. E. 2013. The assembly of plants used as nectar sources by hummingbirds in a Cerrado area of Central Brazil. Plant Systematics and Evolution 299:11191133.CrossRefGoogle Scholar
BENITEZ-VIEYRA, S., FORNONI, J., PÉREZ-ALQUICIRA, J., BOEGE, K. & DOMÍNGUEZ, C. A. 2014. The evolution of signal-reward correlations in bee- and hummingbird-pollinated species of Salvia. Proceedings of the Royal Society B 281:20132934.CrossRefGoogle ScholarPubMed
BETTS, M. G., HADLEY, A. S. & KRESS, W. J. 2015. Pollinator recognition by a keystone tropical plant. Proceedings of the National Academy of Sciences USA 112:34333438.CrossRefGoogle ScholarPubMed
BROWN, J. H., CALDER, W. A. & KODRIC-BROWN, A. 1978. Correlates and consequences of body size in nectar-feeding birds. American Zoologist 18:687738.CrossRefGoogle Scholar
BROWN, M., DOWNS, C. T. & JOHNSON, S. D. 2011. Covariation of flower traits and bird pollinator assemblages among populations of Kniphofia linearifolia (Asphodelaceae). Plant Systematics and Evolution 294:194206.CrossRefGoogle Scholar
BUZATO, S., SAZIMA, M. & SAZIMA, I. 2000. Hummingbird-pollinated floras at three Atlantic Forest sites. Biotropica 32:824841.Google Scholar
DUDASH, M. R., HASSLER, C., STEVENS, P. M. & FERNSTER, C. B. 2011. Experimental floral and inflorescence trait manipulations affect pollinator preference and function in a hummingbird-pollinated plant. American Journal of Botany 98:275282.CrossRefGoogle Scholar
FEINSINGER, P. & COLWELL, R. K. 1978. Community organization among neotropical nectar-feeding birds. American Zoologist 18:779795.CrossRefGoogle Scholar
FRECKLETON, R. P., HARVEY, P. H. & PAGEL, M. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. American Naturalist 160:712726.CrossRefGoogle Scholar
GALEN, C. 1999. Why do flowers vary? BioScience 49:631640.CrossRefGoogle Scholar
JOHNSON, S. D. & NICOLSON, S. W. 2008. Evolutionary associations between nectar properties and specificity in bird pollination systems. Biology Letters 4:4952.CrossRefGoogle ScholarPubMed
KIM, W., GILET, T. & BUSH, J. W. M. 2011. Optimal concentrations in nectar feeding. Proceedings of the National Academy of Sciences, USA 108:1661816621.CrossRefGoogle ScholarPubMed
LÁZARO, A., VIGNOLO, C. & SANTAMARÍA, L. 2015. Long corollas as nectar barries in Lonicera implexa: interactions between corolla tube length and nectar volume. Evolutionary Ecology 29:419435.CrossRefGoogle Scholar
MARUYAMA, P. K., OLIVEIRA, G. M., FERREIRA, C., DALSGAARD, B. & OLIVEIRA, P. E. 2013. Pollination syndromes ignored: importance of non-ornithophilous flowers to neotropical savanna hummingbirds. Naturwissenschaften 100:10611068.CrossRefGoogle ScholarPubMed
MONTGOMERIE, R. D. 1984. Nectar extraction by hummingbirds: response to different floral characters. Oecologia 63:229236.CrossRefGoogle ScholarPubMed
MUNDRY, R. 2014. Statistical issues and assumptions of phylogenetic generalized least squares. Pp. 131153 in Garamzegi, L. Z. (ed.). Modern phylogenetic comparative methods and their application in evolutionary biology. Springer, New York.CrossRefGoogle Scholar
MÜNKEMÜLLER, T., LAVERGNE, S., BZEZNIK, B., DRAY, S., JOMBART, T., SCHIFFERS, K. & THUILLER, W. 2012. How to measure and test phylogenetic signal. Methods in Ecology and Evolution 3:743756.CrossRefGoogle Scholar
ORNELAS, J. F., ORDANO, M., DE-NOVA, A. J., QUINTERO, M. E. & GARLAND, T. 2007. Phylogenetic analysis of interspecific variation in nectar of hummingbird-visited plants. Journal of Evolutionary Biology 20:19041917.CrossRefGoogle ScholarPubMed
PATON, D. C. & COLLINS, B. G. 1989. Bills and tongues of nectar-feeding birds: a review of morphology, function and performance, with intercontinental comparisons. Australian Journal of Ecology 14:473506.CrossRefGoogle Scholar
PÉREZ, G., LARA, C., VICCON-PALE, J. & SIGNORET-POILLON, M. 2011. Memory for location and visual cues in white-eared hummingbirds Hylocharis leucotis. Current Zoology 57:468476.CrossRefGoogle Scholar
PIACENTINI, V. Q. & VARASSIN, I. G. 2007. Interaction network and the relationships between bromeliads and hummingbirds in an area of secondary Atlantic rain forest in southern Brazil. Journal of Tropical Ecology 23:663671.CrossRefGoogle Scholar
RENGIFO, C., CORNEJO, L. & AKIROV, I. 2006. One size fits all: corolla compression in Aphelandra runcinata (Acanthaceae), an adaptation to short-billed hummingbirds. Journal of Tropical Ecology 22:613619.CrossRefGoogle Scholar
SCHIESTL, F. P. & JOHNSON, S. D. 2013. Pollinator-mediated evolution of floral signals. Trends in Ecology and Evolution 28:307315.CrossRefGoogle ScholarPubMed
STANTON, M. & YOUNG, H. J. 1994. Selecting for floral character associations in wild radish, Raphanus sativus L. Journal of Evolutionary Biology 7:271285.CrossRefGoogle Scholar
TELLO-RAMOS, M. C., HURLY, T. A. & HEALY, S. D. 2014. Female hummingbirds do not relocate rewards using colour cues. Animal Behavior 93:129133.CrossRefGoogle Scholar
TEMELES, E. J., LINHART, Y. B., MASONJONES, M. & MASONJONES, H. D. 2002. The role of flower width in hummingbird bill length-flower length relationships. Biotropica 34:6880.Google Scholar
VIZENTIN-BUGONI, J., MARUYAMA, P. K. & SAZIMA, M. 2014. Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird-plant network. Proceedings of the Royal Society B 281:20132397.CrossRefGoogle Scholar
ZANNE, A. E., TANK, D. C., CORNWELL, W. K., EASTMAN, J. M., SMITH, S. A., FITZJOHN, R. G., MCGLINN, D. J., O'MEARA, B. C., MOLES, A. T., REICH, P. B., ROYER, D. L., SOLTIS, D. E., STEVENS, P. F., WESTOBY, M., WRIGHT, I. J., AARSSEN, L., BERTIN, R. I., CALAMINUS, A., GOVAERTS, R., HEMMINGS, F., LEISHMAN, M. R., OLEKSYN, J., SOLTIS, P. S., SWENSON, N. G., WARMAN, L. & BEAULIEU, J. M. 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506:8992.CrossRefGoogle Scholar