Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T18:57:39.810Z Has data issue: false hasContentIssue false

A model of litterfall, litter layer losses and mass transfer in a humid tropical forest at Pernambuco, Brazil

Published online by Cambridge University Press:  10 July 2009

Everardo Valadares de Sá Barretto Sampaio
Affiliation:
Departamento de Energia Nuclear, Universidade Federal de Pernambuco
Attilio Dall'Olio
Affiliation:
Departamento de Energia Nuclear, Universidade Federal de Pernambuco
Katia Smera Nunes
Affiliation:
Departamento de Energia Nuclear, Universidade Federal de Pernambuco
Eurico Eduardo Pinto de Lemos
Affiliation:
Departamento de Energia Nuclear, Universidade Federal de Pernambuco

Abstract

Data on litterfall, litter layers accumulated on top of the mineral soil and layer mineralization collected for three years in a tropical rain forest at Pernambuco, Brazil, were implemented on a simulation model. Litterfall was collected biweekly using 11 collectors 1 × 1 m. Every three months, 20 litter mat samples, 0.5 × 0.5 m, were collected, divided into the L, F and H layers and the CO2 evolution from each litter layer was determined in the laboratory. Litterfall, in the three years, averaged 7.8, 8.3 and 8.2 Mg ha-1 y-1, most of it leaves. Litter mat masses varied widely from place to place (15–90 Mg ha-1) and the overall averages were 5.6, 7.6 and 26.1 Mg ha-1 for the L, F and H layers, with CO2 evolution averages of 2.27, 0.507 and 0.123 mgC g litter C-1 day-1. According to the model, the L layer had a high turnover rate, losing 4.7 Mg ha-1 y-1 through mineralization and 3.4 Mg ha-1 y-1 transferred to the F layer. Values for the F and H layers were 1.4 and 1.2 mineralized and 2.0 and 0.8 Mg ha-1 y-1 transferred. Thus, it would take 2.1, 6.7 and 39 years for newly fallen leaves to be mostly fragments, to be transformed to humus and to be incorporated to the soil organic matter, respectively. Variations of litterfall throughout the three years would have little effect on the system which was not very sensitive to litterfall changes, except for the top layer.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Andrade-Lima, D. 1961. Tipos de floresta de Pernambuco. Anais da Associaçăo de Geógrafos Brasileiros 12:6985.Google Scholar
Bosatta, E. & Ågren, G. I. 1991. Theoretical analysis of carbon and nutrient interactions in soils under energy-limited conditions. Soil Science Society of America Journal 55:728733.CrossRefGoogle Scholar
Brown, S. & Lugo, A. E. 1982. The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica 14:161187.CrossRefGoogle Scholar
Dantas, M. & Phillipson, J. 1989. Litterfall and litter nutrient content in primary and secondary Amazonian ‘terra firme’ rain forest. Journal of Tropical Ecology 5:2736.CrossRefGoogle Scholar
Edwards, N. T. & Sollins, P. 1973. Continuous measurement of carbon dioxide evolution from partitioned forest floor components. Ecology 54:406412.CrossRefGoogle Scholar
Freitas, V. L. C. 1990. Massas de serapilheira em onze matas defaixa úmida de Pernambuco. MSc dissertation, Universidade Federal Rural de Pernambuco. 95 pp.Google Scholar
Golley, F. B., McGinnis, J. T., Clements, R. G., Child, G. L. & Dueve, M. S. 1978. Ciclagem de minerais em um ecossistema de floresta tropical úumida. Pedagógica e Universitária, Săo Paulo. 256 pp.Google Scholar
Jordan, C. F. 1982. Amazon rainforests. American Scientist 20:394401.Google Scholar
Jordan, C. F. & Escalante, G. 1980. Root productivity in an Amazonian rain forest. Ecology 61:1418.CrossRefGoogle Scholar
Kauffman, J. B., Uhl, C. & Cummings, D. L. 1988. Fire in the Venezuelan Amazon 1: Fuel biomass and fire chemistry in the evergreen rainforest of Venezuela. Oikos 53:167175.CrossRefGoogle Scholar
Kira, T. & Shidei, T. 1967. Primary production and turnover of organic matter in different forest ecosystems of the Western Pacific. Japanese Journal of Ecology 17:7087.Google Scholar
Klinge, H. & Herrera, R. 1978. Biomass studies in Amazon caatinga forest in Southern Venezuela. 1. Standing crop of composite root mass in selected stands. Tropical Ecology 19:93110.Google Scholar
Lam, P. K. S. & Dudgeon, D. 1985. Breakdown of Ficus fistulosa (Moraceae) leaves in Hong Kong, with special reference to dynamics of elements and the effects of invertebrate consumers. Journal of Tropical Ecology 1:249264.CrossRefGoogle Scholar
Maia, L. C. 1980. Sucessăo fúngica em folhedo. Mata de Dois Irmăos – Recife. MSc dissertation, Universidade Federal Rural de Pernambuco, Recife. 187 pp.Google Scholar
Millar, C. S. 1974. Decomposition or coniferous leaf litter. Pp 105128 in Dickinson, C. H. & Pugh, C. J. F. (eds). Biology of plant litter decomposition. Academic Press, London.CrossRefGoogle Scholar
Newell, S. Y., Fallon, R. D., Cal Rodriguez, R. M. & Roene, L. C. 1985. Influence of rain, tidal wetting and relative humidity on release of carbon dioxide by standing-dead salt-marsh plants. Oecologia 68:7379.CrossRefGoogle ScholarPubMed
Olson, J. S. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322331.CrossRefGoogle Scholar
Raich, J. W. 1983. Effects of forest conversion on the carbon budget of a tropical soil. Biotropica 15:177184.CrossRefGoogle Scholar
Richmond, B., Peterson, S. & Vescuso, P. 1987. An academic user's guide to STELLA. Lyme, High Performance Systems. 392 pp.Google Scholar
Salas, G. 1987. Suelos y ecosistemas forestales; con énfasis en América tropical. San José, Costa Rica, IICA. 450 pp.Google Scholar
Sampaio, E. V. S. B., Nunes, K. S. & Lemos, E. E. P. 1988. Ciclagem de nutrientes na mata de Dois Irmãos (Recife – PE) através de queda de material vegetal. Pesquisa Agropecuária Brasileira 23:10551061.Google Scholar
Songwe, N. C., Fasehun, F. E. & Okali, D. U. U. 1988. Litterfall and productivity in a tropical rain forest, Southern Bakundu Forest Reserve, Cameroon. Journal of Tropical Ecology 4:2537.CrossRefGoogle Scholar
Stark, N. M. & Jordan, C. F. 1978. Nutrient retention by the root mat in an Amazonian rain forest. Ecology 59:434437.CrossRefGoogle Scholar
Thornthwaite, C. W. & Mather, J. R. 1955. The water balance. Publications in climatology, 8 (1), Centerton NJ.104 pp.Google Scholar
Unesco. 1978. Tropical forest ecosystems. A state of knowledge. UNEP/FAO, Paris. Pp. 233288 (Natural Resources Research XIV).Google Scholar
Woods, P. V. & Raison, R. J. 1982. An appraisal of techniques for the study of litter decomposition in eucalypt forests. Journal of Ecology 7:215225.Google Scholar