Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-23T12:21:24.721Z Has data issue: false hasContentIssue false

Local scale carbon stock measurements, including deep soil layers, in a terra firme forest in northwestern Amazon

Published online by Cambridge University Press:  08 January 2025

Alvaro Duque*
Affiliation:
Departamento de Ciencias Forestales, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia
Luisa F. Gómez-Correa
Affiliation:
Departamento de Ciencias Forestales, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia
Andrés Alberto Barona-Colmenares
Affiliation:
Herbario Amazónico Colombiano, Instituto Amazónico de Investigaciones Científicas SINCHI, Bogotá, Colombia
Nicolás Castaño
Affiliation:
Herbario Amazónico Colombiano, Instituto Amazónico de Investigaciones Científicas SINCHI, Bogotá, Colombia
Stuart Davies
Affiliation:
Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, USA
Daniel Zuleta
Affiliation:
Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, USA
Helene C. Muller-Landau
Affiliation:
Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, USA Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
*
Corresponding author: Alvaro Duque; Email: [email protected]

Abstract

Most studies aiming to quantify carbon stocks in tropical forests have focused on aboveground biomass, omitting carbon in soils and woody debris. Here, we quantified carbon stocks in soils up to 3 m depth, woody debris, and aboveground and belowground tree biomass for the 25-ha Amacayacu Forests Dynamics plot in the northwestern Amazon. Including soils to 3 m depth, total carbon stocks averaged 358.9 ± 24.2 Mg C ha−1, of which soils contributed 53%, biomass 44.2%, and woody debris 2.7%. When only including soils to 0.5 m depth, carbon stocks diminished to 222.1 Mg C ha−1 and biomass became the largest contributor. Among 1-ha subplots, total carbon stocks were correlated with soil carbon stocks at ≥0.5 m depth, belowground biomass of all trees, and aboveground biomass of trees ≥60 cm DBH. Our results support the assumption of biomass as the likely largest carbon source associated with land use change in northwestern Amazonia. However, mining and erosion following land use change could also promote a significant release of carbon from soil, the largest carbon stock. To improve the global carbon balance, we need to better quantify total carbon stocks and dynamics in tropical forests beyond aboveground biomass.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez-Berríos, NL and Aide, TM (2015) Global demand for gold is another threat for tropical forests. Environmental Research Letters 10(1), 014006. https://doi.org/10.1088/1748-9326/10/1/014006.CrossRefGoogle Scholar
Anderson-Teixeira, KJ, Herrmann, V, Morgan, RB, Bond-Lamberty, B, Cook-Patton, SC, Ferson, AE, Muller-Landau, HC and Wang, MMH (2021) Carbon cycling in mature and regrowth forests globally. In Environmental Research Letters. IOP Publishing Ltd. https://doi.org/10.1088/1748-9326/abed01.Google Scholar
Anderson-Teixeira, KJ, Wang, MMH, McGarvey, JC and LeBauer, DS (2016) Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (TropForC-db). Global Change Biology 22(5), 16901709. https://doi.org/10.1111/gcb.13226.CrossRefGoogle ScholarPubMed
Araujo, ECG, Sanquetta, CR, Dalla Corte, AP, Pelissari, AL, Orso, GA and Silva, TC (2023) Global review and state-of-the-art of biomass and carbon stock in the Amazon. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2023.117251.CrossRefGoogle Scholar
Avitabile, V, Herold, M, Heuvelink, GBM, Lewis, SL, Phillips, OL, Asner, GP, Armston, J, Ashton, PS, Banin, L, Bayol, N, Berry, NJ, Boeckx, P, de Jong, BHJ, Devries, B, Girardin, CAJ, Kearsley, E, Lindsell, JA, Lopez-Gonzalez, G, Lucas, R, Malhi, Y, Morel, A, Mitchard, ETA, Nagy, L, Qie, L, Quinones, MJ, Ryan, CM, Ferry, SJW, Sunderland, T, Laurin, GV, Gatti, RC, Valentini, R, Verbeeck, H, Wijaya, A and Willcock, S (2016) An integrated pan-tropical biomass map using multiple reference datasets. Global Change Biology 22(4), 14061420. https://doi.org/10.1111/gcb.13139.CrossRefGoogle ScholarPubMed
Baker, TR and Chao, KJ (2011) Manual para medições de detritos de madeira grossa em parcelas RAINFOR.Google Scholar
Baker, TR, Honorio Coronado, EN, Phillips, OL, Martin, J, van der Heijden, GMF, Garcia, M and Silva Espejo, J (2007) Low stocks of coarse woody debris in a southwest Amazonian forest. Oecologia 152(3), 495504. https://doi.org/10.1007/s00442-007-0667-5.CrossRefGoogle Scholar
Cabrera, E, Galindo, G, González, J, Vergara, L, Forero, C, Cubillos, A, Espejo, J, Rubiano, J, Corredor, X, Hurtado, L, Vargas, D and Duque, A (2020) Colombian forest monitoring system: assessing deforestation in an environmental complex country. In Nazip Suratman, M, Abd Latif, Z, De Oliveira, G, Brunsell, N, Shimabukuro, Y, and Antonio Costa Dos Santos, C (eds), Forest Degradation Around the World. London: IntechOpen. https://doi.org/10.5772/intechopen.77433.Google Scholar
Chambers, JQ, Higuchi, N, Schimel, JP, Ferreira, L V and Melack, JM (2000) Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122(3), 380388. https://doi.org/10.1007/s004420050044.CrossRefGoogle ScholarPubMed
Chave, J, Andalo, C, Brown, S, Cairns, MA, Chambers, JQ, Eamus, D, Fölster, H, Fromard, F, Higuchi, N, Kira, T, Lescure, J-P, Nelson, BW, Ogawa, H, Puig, H, Riéra, B and Yamakura, T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145(1), 8799. https://doi.org/10.1007/s00442-005-0100-x.CrossRefGoogle ScholarPubMed
Chave, J, Réjou-Méchain, M, Búrquez, A, Chidumayo, E, Colgan, MS, Delitti, WBC, Duque, A, Eid, T, Fearnside, PM, Goodman, RC, Henry, M, Martínez-Yrízar, A, Mugasha, WA, Muller-Landau, HC, Mencuccini, M, Nelson, BW, Ngomanda, A, Nogueira, EM, Ortiz-Malavassi, E, Pélissier, R, Ploton, P, Ryan, CM, Saldarriaga, JG and Vieilledent, G (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology 20(10), 31773190. https://doi.org/10.1111/gcb.12629.CrossRefGoogle ScholarPubMed
Condit, R (1998) Tropical Forest Census Plots. Springer. https://doi.org/10.1007/978-3-662-03664-8.CrossRefGoogle Scholar
Cushman, KC, Bunyavejchewin, S, Cárdenas, D, Condit, R, Davies, SJ, Duque, Á, Hubbell, SP, Kiratiprayoon, S, Lum, SKY and Muller-Landau, HC (2021) Variation in trunk taper of buttressed trees within and among five lowland tropical forests. Biotropica 53(5), 14421453. https://doi.org/10.1111/btp.12994.CrossRefGoogle Scholar
Davies, SJ, Abiem, I, Abu Salim, K, Aguilar, S, Allen, D, Alonso, A, Anderson-Teixeira, K, Andrade, A, Arellano, G, Ashton, PS, Baker, PJ, Baker, ME, Baltzer, JL, Basset, Y, Bissiengou, P, Bohlman, S, Bourg, NA, Brockelman, WY, Bunyavejchewin, S, Burslem, DFRP, Cao, M, Cárdenas, D, Chang, L-W, Chang-Yang, C-H, Chao, K-J, Chao, W-C, Chapman, H, Chen, Y-Y, Chisholm, RA, Chu, C, Chuyong, G, Clay, K, Comita, LS, Condit, R, Cordell, S, Dattaraja, HS, de Oliveira, AA, den Ouden, J, Detto, M, Dick, C, Du, X, Duque, Á, Ediriweera, S, Ellis, EC, Obiang, NLE, Esufali, S, Ewango, CEN, Fernando, ES, Filip, J, Fischer, GA, Foster, R, Giambelluca, T, Giardina, C, Gilbert, GS, Gonzalez-Akre, E, Gunatilleke, IAUN, Gunatilleke, CVS, Hao, Z, Hau, BCH, He, F, Ni, H, Howe, RW, Hubbell, SP, Huth, A, Inman-Narahari, F, Itoh, A, Janík, D, Jansen, PA, Jiang, M, Johnson, DJ, Jones, FA, Kanzaki, M, Kenfack, D, Kiratiprayoon, S, Král, K, Krizel, L, Lao, S, Larson, AJ, Li, Y, Li, X, Litton, CM, Liu, Y, Liu, S, Lum, SKY, Luskin, MS, Lutz, JA, Luu, HT, Ma, K, Makana, J-R, Malhi, Y, Martin, A, McCarthy, C, McMahon, SM, McShea, WJ, Memiaghe, H, Mi, X, Mitre, D, Mohamad, M, Monks, L, Muller-Landau, HC, Musili, PM, Myers, JA, Nathalang, A, Ngo, KM, Norden, N, Novotny, V, O’Brien, MJ, Orwig, D, Ostertag, R, Papathanassiou, K, Parker, GG, Pérez, R, Perfecto, I, Phillips, RP, Pongpattananurak, N, Pretzsch, H, Ren, H, Reynolds, G, Rodriguez, LJ, Russo, SE, Sack, L, Sang, W, Shue, J, Singh, A, Song, G-ZM, Sukumar, R, Sun, I-F, Suresh, HS, Swenson, NG, Tan, S, Thomas, SC, Thomas, D, Thompson, J, Turner, BL, Uowolo, A, Uriarte, M, Valencia, R, Vandermeer, J, Vicentini, A, Visser, M, Vrska, T, Wang, X, Wang, X, Weiblen, GD, Whitfeld, TJS, Wolf, A, Wright, SJ, Xu, H, Yao, TL, Yap, SL, Ye, W, Yu, M, Zhang, M, Zhu, D, Zhu, L, Zimmerman, JK and Zuleta, D (2021) ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation 253, 108907. https://doi.org/10.1016/j.biocon.2020.108907.CrossRefGoogle Scholar
Doetterl, S, Kearsley, E, Bauters, M, Hufkens, K, Lisingo, J, Baert, G, Verbeeck, H and Boeckx, P (2015) Aboveground vs. belowground carbon stocks in African tropical lowland rainforest: Drivers and implications. PLoS ONE 10(11). https://doi.org/10.1371/journal.pone.0143209.CrossRefGoogle ScholarPubMed
Duque, A, Saldarriaga, J, Meyer, V and Saatchi, S (2017a) Structure and allometry in tropical forests of Chocó, Colombia. Forest Ecology and Management 405, 309318. https://doi.org/10.1016/j.foreco.2017.09.048.CrossRefGoogle Scholar
Duque, A, Muller-Landau, HC, Valencia, R, Cardenas, D, Davies, S, de Oliveira, A, Pérez, ÁJ, Romero-Saltos, H and Vicentini, A (2017b) Insights into regional patterns of Amazonian forest structure, diversity, and dominance from three large terra-firme forest dynamics plots. Biodiversity and Conservation 26(3), 669686. https://doi.org/10.1007/s10531-016-1265-9.CrossRefGoogle Scholar
Eggleston, HS, Buendia, L, Miwa, K, Ngara, T and Tanabe, K (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories.Google Scholar
Gora, EM, Kneale, RC, Larjavaara, M and Muller-Landau, HC (2019) Dead wood necromass in a moist tropical forest: stocks, fluxes, and spatiotemporal variability. Ecosystems 22(6), 11891205. https://doi.org/10.1007/s10021-019-00341-5.CrossRefGoogle Scholar
Grace, J, Mitchard, E and Gloor, E (2014) Perturbations in the carbon budget of the tropics. In Global Change Biology. Blackwell Publishing Ltd, 32383255. https://doi.org/10.1111/gcb.12600.Google Scholar
Harmon, ME, Whigham, DF, Sexton, J and Olmsted, I (1995) Decomposition and mass of woody detritus in the dry tropical forests of the Northeastern Yucatan Peninsula, Mexico. Biotropica 27(3), 305316. https://doi.org/10.2307/2388916.CrossRefGoogle Scholar
Hoorn, C (1994) An environmental reconstruction of the palaeo-Amazon River system (Middle–Late Miocene, NW Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology 112(3), 187238. https://doi.org/10.1016/0031-0182(94)90074-4.CrossRefGoogle Scholar
Houghton, RA, Byers, B and Nassikas, AA (2015) A role for tropical forests in stabilizing atmospheric CO2. In Nature Climate Change. Nature Publishing Group, 10221023. https://doi.org/10.1038/nclimate2869.Google Scholar
Hubau, W, Lewis, SL, Phillips, OL, Affum-Baffoe, K, Beeckman, H, Cuní-Sanchez, A, Daniels, AK, Ewango, CEN, Fauset, S, Mukinzi, JM, Sheil, D, Sonké, B, Sullivan, MJP, Sunderland, TCH, Taedoumg, H, Thomas, SC, White, LJT, Abernethy, KA, Adu-Bredu, S, Amani, CA, Baker, TR, Banin, LF, Baya, F, Begne, SK, Bennett, AC, Benedet, F, Bitariho, R, Bocko, YE, Boeckx, P, Boundja, P, Brienen, RJW, Brncic, T, Chezeaux, E, Chuyong, GB, Clark, CJ, Collins, M, Comiskey, JA, Coomes, DA, Dargie, GC, de Haulleville, T, Kamdem, MND, Doucet, J-L, Esquivel-Muelbert, A, Feldpausch, TR, Fofanah, A, Foli, EG, Gilpin, M, Gloor, E, Gonmadje, C, Gourlet-Fleury, S, Hall, JS, Hamilton, AC, Harris, DJ, Hart, TB, Hockemba, MBN, Hladik, A, Ifo, SA, Jeffery, KJ, Jucker, T, Yakusu, EK, Kearsley, E, Kenfack, D, Koch, A, Leal, ME, Levesley, A, Lindsell, JA, Lisingo, J, Lopez-Gonzalez, G, Lovett, JC, Makana, J-R, Malhi, Y, Marshall, AR, Martin, J, Martin, EH, Mbayu, FM, Medjibe, VP, Mihindou, V, Mitchard, ETA, Moore, S, Munishi, PKT, Bengone, NN, Ojo, L, Ondo, FE, Peh, KS-H, Pickavance, GC, Poulsen, AD, Poulsen, JR, Qie, L, Reitsma, J, Rovero, F, Swaine, MD, Talbot, J, Taplin, J, Taylor, DM, Thomas, DW, Toirambe, B, Mukendi, JT, Tuagben, D, Umunay, PM, van der Heijden, GMF, Verbeeck, H, Vleminckx, J, Willcock, S, Wöll, H, Woods, JT and Zemagho, L (2020) Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579(7797), 8087. https://doi.org/10.1038/s41586-020-2035-0.CrossRefGoogle ScholarPubMed
Kachamba, D, Eid, T and Gobakken, T (2016) Above- and belowground biomass models for trees in the Miombo Woodlands of Malawi. Forests 7(2), 38. https://doi.org/10.3390/f7020038.CrossRefGoogle Scholar
Larjavaara, M and Muller-Landau, H (2011) Cross-section mass: an improved basis for woody debris necromass inventory. Silva Fennica 45(2), 291298. https://doi.org/10.14214/sf.119.CrossRefGoogle Scholar
Larjavaara, M and Muller-Landau, HC (2013) Measuring tree height: a quantitative comparison of two common field methods in a moist tropical forest. Methods in Ecology and Evolution 4(9), 793801. https://doi.org/10.1111/2041-210X.12071.CrossRefGoogle Scholar
Lips, JM and Duivenvoorden, JF (1996) Regional patterns of well drained upland soil differentiation in the middle Caquetá basin of Colombian Amazonia. Geoderma 72(3), 219257. https://doi.org/10.1016/0016-7061(96)00027-4.CrossRefGoogle Scholar
Lips, JM and Duivenvoorden, JF (2001) Caracterización ambiental. In Duivenvoorden, J, Balslev, H, Cavelier, J, Grandez, C, Tuomisto, H, and Valencia, R (eds), Evaluación de recursos naturales no maderables en la Amazonía noroccidental. Amsterdam: Universiteit van Amsterdam, 1946.Google Scholar
Lutz, JA, Furniss, TJ, Johnson, DJ, Davies, SJ, Allen, D, Alonso, A, Anderson-Teixeira, KJ, Andrade, A, Baltzer, J, Becker, KML, Blomdahl, EM, Bourg, NA, Bunyavejchewin, S, Burslem, DFRP, Cansler, CA, Cao, K, Cao, M, Cárdenas, D, Chang, L, Chao, K, Chao, W, Chiang, J, Chu, C, Chuyong, GB, Clay, K, Condit, R, Cordell, S, Dattaraja, HS, Duque, A, Ewango, CEN, Fischer, GA, Fletcher, C, Freund, JA, Giardina, C, Germain, SJ, Gilbert, GS, Hao, Z, Hart, T, Hau, BCH, He, F, Hector, A, Howe, RW, Hsieh, C, Hu, Y, Hubbell, SP, Inman-Narahari, FM, Itoh, A, Janík, D, Kassim, AR, Kenfack, D, Korte, L, Král, K, Larson, AJ, Li, Y, Lin, Y, Liu, S, Lum, S, Ma, K, Makana, J, Malhi, Y, McMahon, SM, McShea, WJ, Memiaghe, HR, Mi, X, Morecroft, M, Musili, PM, Myers, JA, Novotny, V, de Oliveira, A, Ong, P, Orwig, DA, Ostertag, R, Parker, GG, Patankar, R, Phillips, RP, Reynolds, G, Sack, L, Song, GM, Su, S, Sukumar, R, Sun, I, Suresh, HS, Swanson, ME, Tan, S, Thomas, DW, Thompson, J, Uriarte, M, Valencia, R, Vicentini, A, Vrška, T, Wang, X, Weiblen, GD, Wolf, A, Wu, S, Xu, H, Yamakura, T, Yap, S and Zimmerman, JK (2018) Global importance of large-diameter trees. Global Ecology and Biogeography 27(7), 849864. https://doi.org/10.1111/geb.12747.CrossRefGoogle Scholar
Malhi, Y, Aragão, LEOC, Metcalfe, DB, Paiva, R, Quesada, CA, Almeida, S, Anderson, L, Brando, P, Chambers, JQ, da Costa, ACL, Hutyra, LR, Oliveira, P, Patiño, S, Pyle, EH, Robertson, AL and Teixeira, LM (2009) Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Global Change Biology 15(5), 12551274. https://doi.org/10.1111/j.1365-2486.2008.01780.x.CrossRefGoogle Scholar
Martin, AR, Doraisami, M and Thomas, SC (2018) Global patterns in wood carbon concentration across the world’s trees and forests. Nature Geoscience 11(12), 915920. https://doi.org/10.1038/s41561-018-0246-x.CrossRefGoogle Scholar
Navarrete, D, Sitch, S, Aragão, LEOC and Pedroni, L (2016) Conversion from forests to pastures in the Colombian Amazon leads to contrasting soil carbon dynamics depending on land management practices. Global Change Biology 22(10), 35033517. https://doi.org/10.1111/gcb.13266.CrossRefGoogle ScholarPubMed
Ngo, KM, Turner, BL, Muller-Landau, HC, Davies, SJ, Larjavaara, M, Nik Hassan, NF and Lum, S (2013) Carbon stocks in primary and secondary tropical forests in Singapore. Forest Ecology and Management 296, 8189. https://doi.org/10.1016/j.foreco.2013.02.004.CrossRefGoogle Scholar
Nunes, CA, Berenguer, E, França, F, Ferreira, J, Lees, AC, Louzada, J, Sayer, EJ, Solar, R, Smith, CC, Aragão, LEOC, de Lima Braga, D, de Camargo, PB, Cerri, CEP, de Oliveira, RC, Durigan, M, Moura, N, Oliveira, VHF, Ribas, C, Vaz-de-Mello, F, Vieira, I, Zanetti, R and Barlow, J (2022) Linking land-use and land-cover transitions to their ecological impact in the Amazon. Proceedings of the National Academy of Sciences 119(27), e2202310119. https://doi.org/10.1073/pnas.2202310119.CrossRefGoogle Scholar
Pan, Y, Birdsey, RA, Phillips, OL and Jackson, RB (2013) The structure, distribution, and biomass of the world’s forests. Annual Review of Ecology, Evolution, and Systematics 44(1), 593622. https://doi.org/10.1146/annurev-ecolsys-110512-135914.CrossRefGoogle Scholar
Phillips, J, Duque, Á, Scott, C, Wayson, C, Galindo, G, Cabrera, E, Chave, J, Peña, M, Álvarez, E, Cárdenas, D, Duivenvoorden, J, Hildebrand, P, Stevenson, P, Ramírez, S and Yepes, A (2016) Live aboveground carbon stocks in natural forests of Colombia. Forest Ecology and Management 374, 119128. https://doi.org/10.1016/j.foreco.2016.05.009.CrossRefGoogle Scholar
Phillips, J, Ramirez, S, Wayson, C and Duque, A (2019a) Differences in carbon stocks along an elevational gradient in tropical mountain forests of Colombia. Biotropica 51(4), 490499. https://doi.org/10.1111/btp.12675.CrossRefGoogle Scholar
Phillips, OL, Baker, TR, Arroyo, L, Higuchi, N, Killeen, TJ, Laurance, WF, Lewis, SL, Lloyd, J, Malhi, Y, Monteagudo, A, Neill, DA, Núñez Vargas, P, Silva, JNM, Terborgh, J, Vásquez Martínez, R, Alexiades, M, Almeida, S, Brown, S, Chave, J, Comiskey, JA, Czimczik, CI, Di Fiore, A, Erwin, T, Kuebler, C, Laurance, SG, Nascimento, HEM, Olivier, J, Palacios, W, Patiño, S, Pitman, NCA, Quesada, CA, Saldias, M, Torres Lezama, A and Vinceti, B (2004) Pattern and process in Amazon tree turnover, 1976–2001. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359(1443), 381407. https://doi.org/10.1098/rstb.2003.1438.CrossRefGoogle ScholarPubMed
Phillips, OL, Higuchi, N, Vieira, S, Baker, TR, Chao, K-J and Lewis, SL (2009) Changes in Amazonian forest biomass, dynamics, and composition, 1980–2002. In Amazonia and Global Change. 373387. https://doi.org/10.1029/2008GM000779.CrossRefGoogle Scholar
Piponiot, C, Anderson-Teixeira, KJ, Davies, SJ, Allen, D, Bourg, NA, Burslem, DFRP, Cárdenas, D, Chang-Yang, C-H, Chuyong, G, Cordell, S, Dattaraja, HS, Duque, Á, Ediriweera, S, Ewango, C, Ezedin, Z, Filip, J, Giardina, CP, Howe, R, Hsieh, C-F, Hubbell, SP, Inman-Narahari, FM, Itoh, A, Janík, D, Kenfack, D, Král, K, Lutz, JA, Makana, J-R, McMahon, SM, McShea, W, Mi, X, Bt. Mohamad, M, Novotný, V, O’Brien, MJ, Ostertag, R, Parker, G, Pérez, R, Ren, H, Reynolds, G, Md Sabri, MD, Sack, L, Shringi, A, Su, S-H, Sukumar, R, Sun, I-F, Suresh, HS, Thomas, DW, Thompson, J, Uriarte, M, Vandermeer, J, Wang, Y, Ware, IM, Weiblen, GD, Whitfeld, TJS, Wolf, A, Yao, TL, Yu, M, Yuan, Z, Zimmerman, JK, Zuleta, D and Muller-Landau, HC (2022) Distribution of biomass dynamics in relation to tree size in forests across the world. New Phytologist 234(5), 16641677. https://doi.org/10.1111/nph.17995.CrossRefGoogle Scholar
Powers, JS, Corre, MD, Twine, TE and Veldkamp, E (2011) Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proceedings of the National Academy of Sciences 108(15), 63186322. https://doi.org/10.1073/pnas.1016774108.CrossRefGoogle Scholar
Quesada, CA, Lloyd, J, Anderson, LO, Fyllas, NM, Schwarz, M and Czimczik, CI (2011) Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8(6), 14151440. https://doi.org/10.5194/bg-8-1415-2011.CrossRefGoogle Scholar
Quesada, CA, Paz, C, Oblitas Mendoza, E, Phillips, OL, Saiz, G and Lloyd, J (2020) Variations in soil chemical and physical properties explain basin-wide Amazon forest soil carbon concentrations. Soil 6(1), 5388. https://doi.org/10.5194/soil-6-53-2020.CrossRefGoogle Scholar
R Core Team (2023) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Rejou-Machain, M, Tanguy, A, Piponiot, C, Chave, J and Herault, B (2017) BIOMASS: an R package for estimating above-ground biomass and its uncertainty in tropical forests. http://doi.wiley.com/10.1111/2041-210X.12753 Google Scholar
Saatchi, S, Houghton, RA, Dos Santos Alvalá, RC, Soares, J V. and Yu, Y (2007) Distribution of aboveground live biomass in the Amazon basin. Global Change Biology 13(4), 816837. https://doi.org/10.1111/j.1365-2486.2007.01323.x.CrossRefGoogle Scholar
Sierra, CA, del Valle, JI, Orrego, SA, Moreno, FH, Harmon, ME, Zapata, M, Colorado, GJ, Herrera, MA, Lara, W, Restrepo, DE, Berrouet, LM, Loaiza, LM and Benjumea, JF (2007) Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. Forest Ecology and Management 243(2–3), 299309. https://doi.org/10.1016/j.foreco.2007.03.026.CrossRefGoogle Scholar
Slik, JWF, Paoli, G, McGuire, K, Amaral, I, Barroso, J, Bastian, M, Blanc, L, Bongers, F, Boundja, P, Clark, C, Collins, M, Dauby, G, Ding, Y, Doucet, J-L, Eler, E, Ferreira, L, Forshed, O, Fredriksson, G, Gillet, J-F, Harris, D, Leal, M, Laumonier, Y, Malhi, Y, Mansor, A, Martin, E, Miyamoto, K, Araujo-Murakami, A, Nagamasu, H, Nilus, R, Nurtjahya, E, Oliveira, Á, Onrizal, O, Parada-Gutierrez, A, Permana, A, Poorter, L, Poulsen, J, Ramirez-Angulo, H, Reitsma, J, Rovero, F, Rozak, A, Sheil, D, Silva-Espejo, J, Silveira, M, Spironelo, W, ter Steege, H, Stevart, T, Navarro-Aguilar, GE, Sunderland, T, Suzuki, E, Tang, J, Theilade, I, van der Heijden, G, van Valkenburg, J, Do, T, Vilanova, E, Vos, V, Wich, S, Wöll, H, Yoneda, T, Zang, R, Zhang, M-G and Zweifel, N (2013) Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography 22(12), 12611271. https://doi.org/10.1111/geb.12092.CrossRefGoogle Scholar
Spawn, SA, Sullivan, CC, Lark, TJ and Gibbs, HK (2020) Harmonized global maps of above and belowground biomass carbon density in the year 2010. Scientific Data 7(1). https://doi.org/10.1038/s41597-020-0444-4.CrossRefGoogle ScholarPubMed
Valencia, R, Condit, R, Muller-Landau, HC, Hernandez, C and Navarrete, H (2009) Dissecting biomass dynamics in a large Amazonian forest plot. Journal of Tropical Ecology 25(5), 473482. https://doi.org/10.1017/S0266467409990095.CrossRefGoogle Scholar
Veldkamp, E, Schmidt, M, Powers, JS and Corre, MD (2020) Deforestation and reforestation impacts on soils in the tropics. In Nature Reviews Earth and Environment. Springer Nature, 590605. https://doi.org/10.1038/s43017-020-0091-5.Google Scholar
Waring, BG and Powers, JS (2017) Overlooking what is underground: Root:shoot ratios and coarse root allometric equations for tropical forests. Forest Ecology and Management 385, 1015. https://doi.org/10.1016/J.FORECO.2016.11.007.CrossRefGoogle Scholar
Zuleta, D, Duque, A, Cardenas, D, Muller-Landau, HC and Davies, SJ (2017) Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology 98(10), 25382546. https://doi.org/10.1002/ecy.1950.CrossRefGoogle Scholar
Zuleta, D, Russo, SE, Barona, A, Barreto-Silva, JS, Cardenas, D, Castaño, N, Davies, SJ, Detto, M, Sua, S, Turner, BL and Duque, A (2020) Importance of topography for tree species habitat distributions in a terra firme forest in the Colombian Amazon. Plant and Soil 450(1), 133149. https://doi.org/10.1007/s11104-018-3878-0.CrossRefGoogle Scholar
Supplementary material: File

Duque et al. supplementary material

Duque et al. supplementary material
Download Duque et al. supplementary material(File)
File 7.9 MB