Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T04:01:10.689Z Has data issue: false hasContentIssue false

Invasive Syzygium jambos trees in Puerto Rico: no refuge from guava rust

Published online by Cambridge University Press:  13 June 2017

Erin Burman
Affiliation:
El Verde Field Station, HC-05 Box 8974, Río Grande PR 00745–9601, USA Department of Biology, Rhodes College, Box 2338, 2000 N. Parkway, Memphis TN 38112, USA
James D. Ackerman*
Affiliation:
Department of Biology, University of Puerto Rico, P.O. Box 23360, San Juan PR 00931–3360, USA
Raymond L. Tremblay
Affiliation:
Department of Biology, University of Puerto Rico, P.O. Box 860, Humacao PR 00791, USA Center for Applied Tropical Ecology and Conservation, University of Puerto Rico, P.O. Box 23360, San Juan PR 00931–3360, USA
*
*Corresponding author. Email: ackerman.upr@gmail.com

Abstract:

Biological invasions can have negative consequences for resident biota, particularly when disease-causing organisms are involved. Austropuccinia psidii, or guava rust, has rapidly spread through the tropics affecting both native and non-native Myrtaceae. In Puerto Rico, the rust has become common on Syzygium jambos, an invasive tree native to South-East Asia. What are the drivers of infection, and do refugia exist across a heterogeneous landscape? We address these questions using species distribution modelling and beta regressions. The realized and potential distribution of Syzygium jambos is extensive. The model produced an AUC of 0.88, with land-use categories and precipitation accounting for 61.1% of the variation. Predictability of S. jambos is highest in disturbed habitats, especially in mountainous regions with high precipitation. All 101 trees surveyed and measured across Puerto Rico showed signs of infection to varying extents. Infection severity was consistently associated with annual mean temperature in all top beta regression models, but was also commonly associated with tree size and precipitation variables. We found no safe sites for S. jambos. Many trees were extremely unhealthy and some were dead, suggesting that S. jambos may soon become extinct on the island or reduced to persistent stump sprouts. Native vegetation may benefit from the local demise of S. jambos. While the rust has not jumped to native Myrtaceae, vigilance is required, as host-shifts have occurred in other tropical regions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ACKERMAN, J. D., FALCÓN, W., MOLINARI, J., VEGA, C., ESPINO, I. & CUEVAS, A. A. 2014. Biotic resistance and invasional meltdown: consequences of acquired interspecific interactions for an invasive orchid, Spathoglottis plicata in Puerto Rico. Biological Invasions 16:24352447.CrossRefGoogle Scholar
ARNOLD, T. W. 2010. Uninformative parameters and model selection using Akaike's Information Criterion. Journal of Wildlife Management 74:11751178.CrossRefGoogle Scholar
ARTHUR, J. C. 1915. Uredinales of Porto Rico based on collections by F. L. Stevens. Mycologia 7:227255.CrossRefGoogle Scholar
AXELROD, F. S. 2011. A systematic vademecum to the vascular plants of Puerto Rico. BRIT Press, Fort Worth. 420 pp.Google Scholar
BEENKEN, L. 2017. Austropuccinia: a new genus name for the myrtle rust Puccinia psidii placed within the redefined family Sphaerophragmiaceae (Pucciniales). Phytotaxa 297:5361.CrossRefGoogle Scholar
BOOTH, T. H., OLD, K. M. & JOVANOVIC, T. 2000. A preliminary assessment of high risk areas for Puccinia psidii (Eucalyptus rust) in the Neotropics and Australia. Agriculture Ecosystems and Environment 82:295301.CrossRefGoogle Scholar
BROWN, J. K. M. & HOVMØLLER, M. S. 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537541.CrossRefGoogle ScholarPubMed
BROWN, K. A., SCATENA, F. N. & GUREVITCH, J. 2006. Effects of an invasive tree on community structure and diversity in a tropical forest in Puerto Rico. Forest Ecology and Management 226:145152.CrossRefGoogle Scholar
BURDON, J. J. 1987. Diseases and plant population biology. Cambridge University Press, Cambridge. 208 pp.Google Scholar
CARNEGIE, A. J. & COOPER, K. 2011. Emergency response to the incursion of an exotic myrtaceous rust in Australia. Australasian Plant Pathology 40:346359.CrossRefGoogle Scholar
CARNEGIE, A. J. & LIDBETTER, J. R. 2012. Rapidly expanding host range of Puccinia psidii sensu lato in Australia. Australasian Plant Pathology 41:346359.CrossRefGoogle Scholar
CARNEGIE, A. J., LIDBETTER, J. R., WALKER, J., HORWOOD, M. A., TESORIERO, L., GLEN, M. & PRIEST, M. J. 2010. Uredo rangelii, a taxon in the guava rust complex, newly recorded on Myrtaceae in Australia. Australasian Plant Pathology 39:463.CrossRefGoogle Scholar
COATES-BECKFORD, P. L. & TENNANT, P. F. 2013. Plant disease: the Jamaican experience. University of West Indies Press, Kingston, Jamaica. 628 pp.CrossRefGoogle Scholar
COUTINHO, T. A., WINGFIELD, M. J., ALFENAS, A. C. & CROUS, P.W. 1998. Eucalyptus rust: a disease with the potential for serious international implications. Plant Disease 82:819825.CrossRefGoogle Scholar
CRIBARI-NETO, F. & ZEILEIS, A. 2010. Beta regression in R. Journal of Statistical Software 34 (2),:124.CrossRefGoogle Scholar
DAVELOS, A. L. & JAROSZ, A. M. 2004. Demography of American chestnut populations: effects of a pathogen and a hyperparasite. Journal of Ecology 92:675685.CrossRefGoogle Scholar
DENSLOW, J. S. 2003. Weeds in paradise: thoughts on the invasibility of tropical islands. Annals of the Missouri Botanical Garden 90: 119127.CrossRefGoogle Scholar
DESCOURTILZ, M. É. 1827. Flore pittoresque et médicale des Antilles. Volume 5. Paris. 292 pp.Google Scholar
EWEL, J. J. & WHITMORE, J. L. 1973. The ecological life zones of Puerto Rico and the U.S. Virgin Islands. Forest Service Research Paper ITF-18. Institute of Tropical Forestry, Río Piedras. 72 pp.Google Scholar
FRANKLIN, J. 2010. Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge. 340 pp.CrossRefGoogle Scholar
FUMERO-CABÁN, J. J. & MELÉNDEZ-ACKERMAN, E. J. 2007. Relative pollination effectiveness of floral visitors of Pitcairnia angustifolia (Bromeliaceae). American Journal of Botany 94:419424.CrossRefGoogle ScholarPubMed
GESSLER, C., PERTOT, I. & PERAZZOLLI, M. 2011. Plasmopara viticola: a review of knowledge on downy mildew of grapevine and effective disease management. Phytopathologia Mediterranea 50:344.Google Scholar
GILBERT, G. S. 2002. Evolutionary ecology of plant diseases in natural ecosystems. Annual Review of Phytopathology 40:1343.CrossRefGoogle ScholarPubMed
GILBERT, G. S., FOSTER, R. B. & HUBBELL, S. P. 1994. Density and distance-to-adult effects of a canker disease of trees in a moist tropical forest. Oecologia 98:100108.CrossRefGoogle Scholar
GLEN, M., ALFENAS, A. C., ZAUZA, E. A. V., WINGFIELD, M. J. & MOHAMMED, C. 2007. Puccinia psidii: a threat to the Australian environment and economy – a review. Australasian Plant Pathology 36:1.CrossRefGoogle Scholar
HIJMANS, R. J., CAMERON, S. E., PARRA, S. J. L., JONES, P. G. & JARVIS, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 19651978.CrossRefGoogle Scholar
HUANG, H., DANE, F. & KUBISIAK, T. L. 1998. Allozyme and RAPD analysis of the genetic diversity and geographic variation in wild populations of the American chestnut (Fagaceae). American Journal of Botany 85:10131021.CrossRefGoogle ScholarPubMed
JANICK, J. & PAULL, R. E. (eds) 2008. The encyclopedia of fruit & nuts. CABI, Wallingford. 972 pp.CrossRefGoogle Scholar
KUEFFER, C., DAEHLER, C. C., TORRES-SANTANA, C. W., LAVERGNE, C., MEYER, J.-Y., OTTO, R. & SILVA, L. 2010. A global comparison of plant invasions on oceanic islands. Perspectives in Plant Ecology, Evolution and Systematics 12:145161.CrossRefGoogle Scholar
LACH, L., TILLBERG, C. V. & SUAREZ, A. V. 2010. Contrasting effects of an invasive ant on a native and an invasive plant. Biological Invasions 12:31233133.CrossRefGoogle Scholar
LITTLE, E. L. & WADSWORTH, F. H. 1964. Common trees of Puerto Rico and the Virgin Islands. US Department of Agriculture, Washington, DC. 548 pp.Google Scholar
LOOPE, L. 2010. A summary of information on the rust Puccinia psidii Winter (guava rust) with emphasis on means to prevent introduction of additional strains to Hawaii. US Geological Survey Open File Report 2010-1082. 31 pp.CrossRefGoogle Scholar
LÓPEZ MARRERO, T. M. & VILLANUEVA COLÓN, N. 2006. Atlas ambiental de Puerto Rico. Editorial de la Universidad de Puerto Rico, San Juan. 178 pp.Google Scholar
MACLACHLAN, J. D. 1938. A rust of the pimento tree in Jamaica, B.W.I. Phytopathology 28:157170.Google Scholar
MELÉNDEZ, E. J. & ACKERMAN, J. D. 1993. The effects of rust infection on fitness components in a natural population of Tolumnia variegata (Orchidaceae). Oecologia 94:361367.CrossRefGoogle Scholar
MEENTEMEYER, R. K., HAAS, S. E. & VÁCLAVÍK, T. 2012. Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems. Annual Review of Phytopathology 50: 379402.CrossRefGoogle ScholarPubMed
MEROW, C., SMITH, M. J. & SILANDER, J. A. 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:10581069.CrossRefGoogle Scholar
MORIN, L., AVEYARD, R., LIDBETTER, J. R. & WILSON, P. G. 2012. Investigating the host-range of the rust fungus Puccinia psidii sensu lato across tribes of the family Myrtaceae present in Australia. PLoS ONE 7:e35434.CrossRefGoogle ScholarPubMed
PEGG, G. S., GIBLIN, F. R., MCTAGGART, A. R., GUYMER, G. P., TAYLOR, H., IRELAND, K. B., SHIVAS, R. G. & PERRY, S. 2014. Puccinia psidii in Queensland, Australia: disease symptoms, distribution and impact. Plant Pathology 63: 10051021.CrossRefGoogle Scholar
PHILLIPS, S. J., ANDERSON, R. P. & SCHAPIRE, R. E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231259.CrossRefGoogle Scholar
PIZA, S. M. DE T. & RIBEIRO, I. J. A. 1988. Influence of light and temperature on uredospore germination of Puccinia psidii Winter. Bragantia 47:7578.CrossRefGoogle Scholar
PLANTEGENEST, M., LE MAY, C. & FABRE, F. 2007. Landscape epidemiology of plant disease. Journal of the Royal Society Interface 4:963972.CrossRefGoogle Scholar
RAYAMAJHI, M. B., PRATT, P. D., KLOPFENSTEIN, N. B., ROSS-DAVIS, A. L. & RODGERS, L. 2013. First report of Puccinia psidii caused rust disease epiphytotic on the invasive shrub Rhodomyrtus tomentosa in Florida. Plant Disease 97:1379.CrossRefGoogle ScholarPubMed
REJMÁNEK, M. 1996. Species richness and resistance to invasion. Pp. 153172 in Orians, G., Dirzo, R. & Cushman, J. H. (eds). Biodiversity and ecosystem processes in tropical forests. Springer-Verlag, New York.CrossRefGoogle Scholar
ROJAS-SANDOVAL, J. & ACEVEDO-RODRÍGUEZ, P. 2015. Naturalization and invasion of alien plants in Puerto Rico and the Virgin Islands. Biological Invasions 17:149163.CrossRefGoogle Scholar
ROSS-DAVIS, A. L., GRAÇA, R. N., ALFENAS, A. C., PEEVER, T. L., HANNA, J. W., UCHIDA, J. Y., HAUFF, R. D., KADOOKA, C. Y, KIM, M. E., CANNON, P. G., NAMBA, S., MINATO, N., SIMETO, S., PÉREZ, C. A., RAYAMAJHI, M. B., MORÁN, M., LODGE, D. J., ARGUEDAS, M., MEDEL-ORTIZ, R., LÓPEZ-RAMIREZ, M. A., TENNANT, P., GLEN, M. & KLOPFENSTEIN, N. B. 2014. Tracking the distribution of Puccinia psidii genotypes that cause rust disease on diverse myrtaceous trees and shrubs. Pp. 131137 in Chadwick, K. (ed.). Proceedings of the 61st Annual Western International Forest Disease Work Conference, Waterton Lakes National Park, Alberta. U.S. Department of Agriculture, Forest Service, Forest Health Protection, Washington, DC. Google Scholar
SIMBERLOFF, D. & VON HOLLE, B. 1999. Positive interactions of nonindigenous species: invasional meltdown? Biological Invasions 1:2132.CrossRefGoogle Scholar
SMITH, S. A. & SHURIN, J. B. 2006. Room for one more? Evidence for invasibility and saturation in ecological communities. Pp. 423447 in Cadotte, M. W., McMahon, S. M. & Fukami, T. (eds). Conceptual ecology and invasion biology. Springer, Dordrecht.Google Scholar
TESSMANN, D. J., DIANESE, J. C., MIRANDA, A. C. & CASTRO, L. H. R. 2001. Epidemiology of a Neotropical rust (Puccinia psidii): periodical analysis of the temporal progress in a perennial host (Syzygium jambos). Plant Pathology 50:725731.CrossRefGoogle Scholar
UCHIDA, J. Y. & LOOPE, L. L. 2009. A recurrent epiphytotic of guava rust on rose apple, Syzygium jambos, in Hawaii. Plant Disease 93:429.CrossRefGoogle Scholar
WEBBER, J. F. 2004. Experimental studies on factors influencing the transmission of Dutch elm disease. Investigacion Agraria Sistemas y Recursos Forestales 13:197205.Google Scholar
ZAUZA, E. A. V., LANA, V. M., MAFFIA, L. A., ARAUJO, M. M. F. C., ALFENAS, R. F., SILVA, F. F. & ALFENAS, A. C. 2014. Wind dispersal of Puccinia psidii urediniospores and progress of eucalypt rust. Forest Pathology 45:102110.CrossRefGoogle Scholar