Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T08:12:56.107Z Has data issue: false hasContentIssue false

The influence of microhabitat, moisture and diet on stable-hydrogen isotope variation in a Neotropical avian food web

Published online by Cambridge University Press:  30 September 2011

Kevin C. Fraser*
Affiliation:
Department of Biology, University of New Brunswick, Fredericton, New Brunswick, P.O. Box 4400, E3B 5A3, Canada
Emily A. McKinnon
Affiliation:
Department of Biology, York University, Toronto, Ontario, 4700 Keele St., M3J 1P3, Canada
Antony W. Diamond
Affiliation:
Department of Biology, University of New Brunswick, Fredericton, New Brunswick, P.O. Box 4400, E3B 5A3, Canada
Liliana Chavarría
Affiliation:
Finca y Reserva Silvestre Privada Nebliselva El Jaguar, Managua, P.O. Box Apartado E-22, Nicaragua
*
1Corresponding author. Current address: Department of Biology, York University, Toronto, Ontario, 4700 Keele St., M3 J 1 P3, Canada. Email: [email protected]

Abstract:

The application of stable-hydrogen isotope (δD) measurements to the study of animal movement, resource use and physiology depends on understanding factors driving variation in δD in animal tissues. The source of micro-scale variation in δD is poorly known, yet understanding micro-scale patterns of δD could shed light on important ecological processes and improve our abilities to track animal movements. Using linear and additive models, we explored the influence of micro-scale habitat use, moisture and diet on tissue δD values of Nicaraguan cloud-forest birds. Using mist nets, we captured 211 individuals of 22 resident Neotropical species at 500–1390 m asl and collected feather and claw samples. Based on three years of data from year-round sampling, our results suggest that microhabitat, seasonal shifts in moisture δD, and diet all influence bird tissue δD values. Our model results reveal a previously undescribed microgeographical effect on δD, where foraging level (understorey versus overstorey) and foraging location (forest interior versus adjacent coffee plantation) were significant predictors of δD values in bird claws and feathers. Mean claw and feather δD values among species varied from −83‰ to −19‰. Top models for claws and feathers explained 57% and 52% of variation in δD respectively. Direct comparisons of understorey (mean ± SD of −30‰ ± 15‰) versus overstorey (−50‰ ± 15‰) claw values suggest that δD may be useful in tracking vertical, micro-scale movement. Higher δD values in forest understorey birds reveal a heavy reliance upon recycled, fog moisture. Fragmentation and climate change may result in increasingly desiccated cloud forest that may exert a more negative influence on the food webs of understorey species that seem to be supported by recycled sources of moisture in the dry season.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AMERICAN ORNITHOLOGISTS’ UNION. 1998. Check-list of North American birds. (Seventh edition). American Ornithologists’ Union, Washington, DC. 829 pp.Google Scholar
BEARHOP, S. R., FURNESS, W., HILTON, G. C., VOTIER, S. C. & WALDRON, S. 2003. A forensic approach to understanding diet and habitat use from stable isotope analysis of (avian) claw material. Functional Ecology 17:270275.Google Scholar
BETINI, G. S., HOBSON, K. A., WASSENAAR, L. I. & NORRIS, D. R. 2009. Stable hydrogen isotope (δD) values in songbird nestlings: effects of diet, temperature, and body size. Canadian Journal of Zoology 87:767772.Google Scholar
BIRCHALL, J., O'CONNELL, T. C., HEATON, T. H. E. & HEDGES, R. E. M. 2005. Hydrogen isotope ratios in animal body protein reflect trophic level. Journal of Animal Ecology 74:877881.Google Scholar
BOWEN, G. J., WASSENAAR, L. I. & HOBSON, K. A. 2005. Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143:337348.Google Scholar
BURNHAM, K. P. & ANDERSON, D. R. 2002. Model selection and multi-model inference: a practical information-theoretic approach. Springer-Verlag, Berlin. 488 pp.Google Scholar
CARLETON, S. A., KELLY, L., ANDERSON-SPRECHER, R. & MARTÍNEZ DEL RIO, C. 2008. Should we use one-, or multi-compartment models to describe 13C incorporation into animal tissues? Rapid Communications in Mass Spectrometry 22:30083014.Google Scholar
DANSGAARD, W. 1964. Stable isotopes in precipitation. Tellus 16:436468.CrossRefGoogle Scholar
DE SANTE, D. F., SARACCO, J. F., DE VIVAR ALVAREZ, C. R. & MORALES, S. 2009. Instructions for establishing and operating bird-banding stations as part of the MoSI program. Institute for Bird Populations. Pt. Reyes Station. 44 pp.Google Scholar
FARMER, A., CADE, B. S. & TORRES-DOWDAL, J. 2008. Fundamental limits to the accuracy of deuterium isotopes for identifying the spatial origin of migratory animals. Oecologia 158:183192.CrossRefGoogle Scholar
FRASER, K. C., KYSER, T. K., ROBERTSON, R. J. & RATCLIFFE, L. M. 2008. Seasonal patterns in hydrogen isotopes of claws from breeding wood-warblers (Parulidae): Utility for estimating migratory origins. Avian Conservation and Ecology – Écologie et Conservation des Oiseaux 3: 2. [online] URL: http://www.ace-eco.CrossRefGoogle Scholar
FRASER, K. C., McKINNON, E. A. & DIAMOND, A. W. 2010. Migration, diet, or moult? Interpreting stable-hydrogen isotope values in Neotropical bats. Biotropica 42:512517.CrossRefGoogle Scholar
FRICKE, H. C. & O'NEILL, J. R. 1999. The correlation between 18O/16O ratios of meteoric water and surface temperature: its use in investigating terrestrial climate change over geologic time. Earth and Planetary Science Letters 170:181196.Google Scholar
GRUBB, T. C. & PRAVOSUDOV, V. V. 1994. Ptilochronology: follicle history fails to influence growth of an induced feather. Condor 96:214217.CrossRefGoogle Scholar
HARDESTY, J. L. & FRASER, K. C. 2010. Using deuterium to examine altitudinal migration by Andean birds. Journal of Field Ornithology 81:8391.Google Scholar
HOBSON, K. A. 2008. Applying isotopic methods to tracking animal movements. Pp. 4578 in Hobson, K. A. & Wassenaar, L. I. (ed.). Tracking animal migration with stable isotopes. Elsevier, London. 144 pp.Google Scholar
HOBSON, K. A. & WASSENAAR, L. I. 1997. Linking breeding and wintering grounds of Neotropical-Nearctic migrant songbirds using stable hydrogen isotopic analysis of feathers. Oecologia 109:142148.Google Scholar
HOBSON, K. A., ATWELL, L. A. & WASSENAAR, L. I. 1999. Influence of drinking water and diet on the stable-hydrogen isotope ratios of animal tissues. Proceedings of the National Academy of Sciences USA 96:80038006.CrossRefGoogle ScholarPubMed
HYODO, F., MATSUMOTO, T., TAKEMATSU, Y, KAMOI, T., FUKUDA, D., NAKAGAWA, M. & ITIOKA, T. 2010. The structure of a food web in a tropical rain forest in Malaysia based on carbon and nitrogen stable isotope ratios. Journal of Tropical Ecology 26:205214.Google Scholar
LACHNIET, M. S. & PATTERSON, W. P. 2002. Stable isotope values of Costa Rican surface waters. Journal of Hydrology 260:135150.Google Scholar
LANGIN, K. M., REUDINK, M. W., MARRA, P. P., NORRIS, D. R., KYSER, T. K. & RATCLIFFE, L. M. 2007. Hydrogen isotopic variation in migratory bird tissues of known origin: implications for geographic assignment. Oecologia 152:449457.CrossRefGoogle ScholarPubMed
LIU, W., MENG, F. R., ZHANG, Y., LIU, Y. & LI, H. 2004. Water input from fog drip in the tropical seasonal rain forest of Xishuangbanna, South-West China. Journal of Tropical Ecology 20:517524.Google Scholar
LIU, W. J., ZHANG, Y. P., LI, H. M. & LIU, Y. H. 2005. Fog drip and its relation to groundwater in the tropical seasonal rain forest of Xishuangbanna, Southwest China: a preliminary study. Water Research 39:787794.CrossRefGoogle ScholarPubMed
LIU, W. J., LIU, W. Y, LI, P. J., GAO, L., SHEN, Y. X., WANG, P. Y., ZHANG, Y. P. & LI, H. M. 2007. Using stable isotopes to determine sources of fog drip in a tropical seasonal rain forest of Xishuangbanna, SW China. Agricultural and Forest Meteorology 143:8091.CrossRefGoogle Scholar
MARRA, P. P., HOBSON, K. A. & HOLMES, R. T. 1998. Linking winter and summer events in a migratory bird using stable-carbon isotopes. Science 282:18841886.CrossRefGoogle Scholar
MARTÍNEZ DEL RIO, C., WOLF, N., CARLETON, S. A. & GANNES, L. Z. 2009. Isotopic ecology ten years after a call for more laboratory experiments. Biological Reviews 84:91111.Google Scholar
MARTÍNEZ SALINAS, M. A. 2008. Conectividad funcional para aves terrestres dependientes de bosque en un paisaje fragmentado en Matiguás, Nicaragua. M.Sc. thesis. Tropical Agricultural Research and Higher Education Center, Costa Rica.Google Scholar
MCKECHNIE, A. E., WOLF, B. O. & MARTÍNEZ DEL RIO, C. 2004. Deuterium stable isotope ratios as tracers of water resource use: an experimental test with Rock Dove. Oecologia 140:191200.CrossRefGoogle Scholar
MOERMOND, T. C. & DENSLOW, J. S. 1985. Neotropical avian frugivores: patterns of behavior, morphology, and nutrition, with consequences for fruit selection. Ornithological Monographs 36:865897.CrossRefGoogle Scholar
POWELL, L. A. & HOBSON, K. A. 2006. Enriched feather hydrogen isotope values for Wood Thrushes sampled in Georgia, USA, during the breeding season: implications for quantifying dispersal. Canadian Journal of Zoology 84:13311338.Google Scholar
PYLE, P. 1997. Identification guide to North American birds. Part 1. Columbidae to Ploceidae. Slate Creek Press, Bolinas. 732 pp.Google Scholar
QUINLAN, S. P. & GREEN, D. J. 2011. Variation in deuterium (δD) signatures of Yellow Warbler Dendroica petechia feathers grown on breeding and wintering grounds. Journal of Ornithology 152:93101.Google Scholar
ROCQUE, D. A., BEN-DAVID, M., BARRY, R. P. & WINKER, K. 2006. Assigning birds to wintering and breeding grounds using stable isotopes: lessons from two feather generations among three intercontinental migrants. Journal of Ornithology 147:395404.CrossRefGoogle Scholar
STILES, F. G. & SKUTCH, A. F. 1989. Birds of Costa Rica. Cornell University Press, Ithaca. 511 pp.Google Scholar
WASSENAAR, L. I. 2008. An introduction to light stable isotopes for use in terrestrial animal migration studies. Pp. 2144 in Hobson, K. A. & Wassenaar, L. I. (ed.). Tracking animal migration with stable isotopes. Elsevier, London.Google Scholar
WASSENAAR, L. I. & HENDRY, M. J. 2008. High-precision laser spectroscopy D/H and 18O/16O measurements of microlitre natural water samples. Analytical Chemistry 80:287293.Google Scholar
WASSENAAR, L. I. & HOBSON, K. A. 2000. Improved method for determining the stable-hydrogen isotopic composition (δD) of complex organic materials of environmental interest. Environmental Science and Technology 34:23542360.Google Scholar
WASSENAAR, L. I. & HOBSON, K. A. 2003. Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isotopes in Environmental and Health Studies 39:211217.Google Scholar
WASSENAAR, L. I. & HOBSON, K. A. 2006. Stable-hydrogen isotope heterogeneity in keratinous materials: mass spectrometry and migratory wildlife tissue subsampling strategies. Rapid Communications in Mass Spectrometry 20:25052510.Google Scholar
WUNDER, M. B., KESTER, C. L., KNOPF, F. L. & RYE, R. O. 2005. A test of geographic assignment using isotope tracers in feathers of known origin. Oecologia 144:607617.Google Scholar
ZUUR, A. F., IENO, E. N., WALKER, N. J., SAVELIEV, A. A. & SMITH, G. M. 2009. Mixed effects models and extensions in ecology with R. Springer, New York. 574 pp.CrossRefGoogle Scholar
ZUUR, A. F., IENO, E. N. & ELPHICK, C. S. 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1:314.CrossRefGoogle Scholar