Published online by Cambridge University Press: 07 January 2022
Invasive alien species are a major threat to global biodiversity due to the tremendous ecological and economic damage they cause in forestry, agriculture, wetlands, and pastoral resources. Understanding the spatial pattern of invasive alien species and disentangling the biophysical drivers of invasion at the forest stand level is essential for managing forest ecosystems and the wider landscape. However, forest-level and species-specific information on Invasive Alien Plant Species (IAPS) abundance and their spatial extent are largely lacking. In this context, we analysed the cover of one of the world’s worst invasive plants, Chromolaena odorata, in Sal (Shorea robusta) forest in central Nepal. Vegetation was sampled in four community forests using 0.01 ha square quadrats, covering the forest edge to the interior. C. odorata cover, floral richness, tree density, forest canopy cover, shrub cover, tree basal area, and disturbances were measured in each plot. We also explored forest and IAPS management practices in community forests. C. odorata cover was negatively correlated with forest canopy cover, distance to the road, angle of slope, and shrub cover. Tree canopy cover had the largest effect on C. odorata cover. No pattern of C. odorata cover was seen along native species richness gradients. In conclusion, forest canopy cover is the overriding biotic covariate suppressing C. odorata cover in Sal forests.