Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-02T23:30:57.172Z Has data issue: false hasContentIssue false

Differences in growth rate, body condition, habitat use and food availability between island and mainland lizard populations of Anolis nebulosus in Jalisco, Mexico

Published online by Cambridge University Press:  27 June 2014

Héctor Hugo Siliceo-Cantero
Affiliation:
Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México. C. P. 04510
Andrés García*
Affiliation:
Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México. C. P. 48980
*
1Corresponding author. Email: [email protected]

Abstract:

Lizards of the genus Anolis have been widely studied, however, little is known about the effects of environmental seasonality, food availability and geographic isolation on body condition, growth rate and habitat use of lizards. The existence of an insular and a continental population of Anolis nebulosus (clouded anole), separated by only 0.47 km, represents an ideal opportunity to address this topic. We compared seasonal fluctuations in food availability (arthropod density) for anoles, as well as body condition, growth rate and habitat use in the two populations. Food availability throughout the year was sampled every 2 mo by trapping arthropods at each site. Lizards were also monitored and measured every 2 mo by surveying three quadrats in each site over 2 y giving a total of 30 visits for each quadrat. Results suggested that composition and density of food supply was similar for the two populations. Nevertheless, food supply responded to seasonality of rainfall, with an increase of 1.5 times during the rainy season. Despite similarity in food availability, insular anoles had body condition that was 5–10 times better, with growth rate twice as fast, and used similar perches. The role of predation, and inter- and intraspecific competition are discussed as possible drivers.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ANCONA, S., DRUMMOND, H. & ZALDÍVAR-RAE, J. 2010. Male whiptail lizards adjust energetically costly mate guarding to male–male competition and female reproductive value. Animal Behaviour 79:7582.Google Scholar
ANDREWS, R. M. 1976. Growth rate in island and mainland anoline lizards. Copeia 1976:477482.CrossRefGoogle Scholar
ANGILLETTA, M. J., SEARS, M. W. & WINTERS, R. S. 2001. Seasonal variation in reproductive effort and its effect on offspring size in the lizard Sceloporus undulatus. Herpetologica 57:365375.Google Scholar
ARIZMENDI, C., BERLANGA, H., MÁRQUEZ, L., NAVARIJO, L. & ORNELAS, F. 1991. Avifauna de la región de Chamela, Jalisco. Instituto de Biología (Serie Cuadernos No. 4). Universidad Nacional Autónoma de México, Mexico. 62 pp.Google Scholar
ASHMOLE, N. P. & ASHMOLE, M. J. 1997. The land fauna of Ascension Island: new data from caves and lava flows, and a reconstruction of the prehistoric ecosystem. Journal of Biogeography 24:549589.CrossRefGoogle Scholar
BEAUSOLEIL, N. J., MELLOR, D. J. & STAFFORD, K. J. 2004. Methods for marking New Zealand wildlife: amphibians, reptiles and marine mammals. Department of Conservation, Wellington. 147 pp.Google Scholar
BUCKLEY, L. B. & JETZ, W. 2007. Insularity and determinants of lizard population density. Ecology Letters 10:481489.Google Scholar
BUCKLEY, L. B. & ROUGHGARDEN, J. 2005. Lizard habitat partitioning on islands: the interaction of local and landscape scales. Journal of Biogeography 32:21132121.CrossRefGoogle Scholar
BULLOCK, S. H. 1986. Climate of Chamela, Jalisco, and trends in the south coastal region of Mexico. Archives of Meteorology, Geophysics, and Bioclimatology, Series B 36:297316.Google Scholar
CEBALLOS, G. & MIRANDA, A. 2000. Guía de campo de los mamíferos de la costa de Jalisco, México. Fundación Ecológica de Cuixmala, A. C. & Universidad Nacional Autónoma de México, Mexico. 502 pp.Google Scholar
CONANP (COMISIÓN NACIONAL DE ÁREAS NATURALES PROTEGIDAS). 2008. Programa de conservación y manejo: Santuario Islas de la Bahía de Chamela. SEMARNAT, Mexico. 149 pp.Google Scholar
CONNOR, E. F., COURTNEY, A. C. & YODER, J. M. 2000. Individuals-area relationships: the relationship between animal population density and area. Ecology 81:734748.Google Scholar
COTE, J. & CLOBERT, J. 2010. Risky dispersal: avoiding kin competition despite uncertainty. Ecology 91:14851493.Google Scholar
COX, R. M. & CALSBEEK, R. 2010. Severe costs of reproduction persist in Anolis lizards despite the evolution of a single-egg clutch. Evolution 64:13211330.Google Scholar
DIAMOND, J. 1986. Overview: laboratory experiments, field experiments, and natural experiments. Pp. 322 in Diamond, J. and Case, T. J. (Eds.). Community Ecology. Harper & Row, New York, NY.Google Scholar
DOWNES, S. 2001. Trading heat and food for safety: costs of predator avoidance in a lizard. Ecology 82:28702881.Google Scholar
DUNHAM, A. E. 1978. Food availability as a proximate factor influencing individual growth rates in the iguanid lizard Sceloporus merriami. Ecology 59:770778.Google Scholar
FATTORINI, S. 2011. Influence of island geography, age and landscape on species composition in different animal groups. Journal of Biogeography 38:13181329.Google Scholar
GARCÍA, A. & CEBALLOS, G. 1994. Guía de campo de los reptiles y anfibios de la costa de Jalisco, México. (Edición en Ingles y Español). Fundación Ecológica de Cuixmala, A.C. Instituto de Biología (UNAM), Mexico. 184 pp.Google Scholar
GARCÍA, A., VALTIERRA-AZOTLA, M. & LISTER, B. 2010. Behavioral responses to seasonality by two Sceloporine lizard species from a tropical dry forest. Animal Biology 60:97113.CrossRefGoogle Scholar
GERBER, G. P. & ECHTERNACHT, A. C. 2000. Evidence for asymmetrical intraguild predation between native and introduced Anolis lizards. Oecologia 124:599607.Google Scholar
GREEN, A. J. 1999. Mass/length residuals: measures of body condition or generators of spurious results? Ecology 82:14731483.CrossRefGoogle Scholar
GRIFFITHS, A. D. & CHRISTIAN, K. A. 1996. Diet and habitat use of frillneck lizards in a seasonal tropical environment. Oecologia 106:3948.Google Scholar
HARMON, L. J., HARMON, L. L. & JONES, C. G. 2007. Competition and community structure in diurnal arboreal geckos (genus Phelsuma) in the Indian Ocean. Oikos 116:18631878.Google Scholar
HERCZEG, G., GONDA, A., SAARIKIVI, J. & MERILÄ, J. 2006. Experimental support for the cost–benefit model of lizard thermoregulation. Behavioral Ecology and Sociobiology 60:405414.CrossRefGoogle Scholar
JENSSEN, T. A., CONGDON, J. D., FISCHER, R. U., ESTES, R., KLING, D. & EDMANDS, S. 1995. Morphological characteristics of the lizard Anolis carolinensis from South Carolina. Herpetologica 51:401411.Google Scholar
KATTAN, G. 2007. Sleeping perch selection in the lizard Anolis ventrimaculatus. Biotropica 16:328329.Google Scholar
KOLBE, J. J., COLBERT, P. L. & SMITH, B. E. 2008. Niche relationships and interspecific interactions in antiguan lizard communities. Copeia 2008:261272.CrossRefGoogle Scholar
LE GALLIARD, J. F., FERRIÈRE, R. & CLOBERT, J. 2003. Mother-offspring interactions affect natal dispersal in a lizard. Proceedings: Biological Sciences 270:11631169.Google Scholar
LEMOS-ESPINAL, J. A., SMITH, G. R. & BALLINGER, R. E. 2003. Variation in growth and demography of a knob-scaled lizard (Xenosaurus newmanorum: Xenosauridae) from a seasonal tropical environment in México. Biotropica 35:240249.Google Scholar
LEWIS, A. R. 1986. Body size and growth in two populations of the Puerto Rican ground lizard (Teiidae). Journal of Herpetology 20:190195.Google Scholar
LISTER, B. C. & GARCÍA, A. 1992. Seasonality, predation and the behaviour of a tropical mainland anole. Journal of Animal Ecology 61:717733.CrossRefGoogle Scholar
LONGFORD, N. T. 2009. Efficient estimation of the standardized value. Journal of Educational and Behavioral Statistics 34:522529.CrossRefGoogle Scholar
LOSOS, J. B. 2009. Lizards in an evolutionary tree: ecology and adaptive radiation of anoles. (First edition). University of California Press, Berkeley, CA. 528 pp.Google Scholar
MASSOT, M., CLOBERT, J., PILORGE, T., LECOMTE, J. & BARBAULT, R. 1992. Density dependence in the common lizard: demographic consequences of a density manipulation. Ecology 73:17421756.Google Scholar
MEIRI, S. 2007. Size evolution in island lizards. Global Ecology and Biogeography 16:702708.Google Scholar
MELVILLE, J. 2002. Competition and character displacement in two species of scincid lizards. Ecology Letters 5:386393.Google Scholar
MONASTERIO, C., SALVADOR, A. & DÍAZ, J. 2010. Competition with wall lizards does not explain the alpine confinement of Iberian rock lizards: an experimental approach. Zoology 113:275282.CrossRefGoogle Scholar
MORRISON, L. W. 1998. The spatiotemporal dynamics of insular ant metapopulations. Ecology 79:11351146.Google Scholar
OLSON, C. L. 1974. Comparative robustness of six tests in multivariate analysis of variance. Journal of the American Statistical Association 69:894908.Google Scholar
PACALA, S. & ROUGHGARDEN, J. 1982. Resource partitioning and interspecific competition in two two-species insular Anolis lizard communities. Science 217:444446.Google Scholar
PAFILIS, P., FOUFOPOULOS, J., POULAKAKIS, N., LYMBERAKIS, P. & VALAKOS, E. 2009. Intraspecific competition and high food availability are associated with insular gigantism in a lizard. Die Naturwissenschaften 96:11071113.Google Scholar
PALKOVACS, E. P. 2003. Explaining adaptive shifts in body size on islands: a life history approach. Oikos 103:3744.Google Scholar
PEIG, J. & GREEN, A. J. 2009. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118:18831891.Google Scholar
RAMÍREZ-HERRERA, M. T., KOSTOGLODOV, V. & URRUTIA-FUCUGAUCHI, J. 2004. Holocene-emerged notches and tectonic uplift along the Jalisco Coast, Southwest Mexico. Geomorphology 58:291304.Google Scholar
SABO, J. L. & POWER, M. E. 2002. River-watershed exchange: effects of riverine subsidies on riparian lizards and their terrestrial prey. Ecology 83:18601869.Google Scholar
SHANBHAG, B. A., RADDER, R. S. & SAIDAPUR, S. K. 2000. Maternal size determines clutch mass, whereas breeding timing influences clutch and egg sizes in the tropical lizard, Calotes versicolor (Agamidae). Copeia 2000:10621067.CrossRefGoogle Scholar
SCHLAEPFER, M. A. 2006. Growth rates and body condition in Norops polylepis (Polychrotidae) vary with respect to sex but not mite load. Biotropica 38:414418.CrossRefGoogle Scholar
SCHOENER, T. W., SPILLER, D. A. & LOSOS, J. B. 2002. Predation on a common Anolis lizard: can the food-web effects of a devastating predator be reversed? Ecological Monographs 72:383407.Google Scholar
SILICEO-CANTERO, H. H. & GARCIA, A. 2013. Anolis nebulosus (Clouded Anole). Predation. Herpetological Review 44:137.Google Scholar
SORCI, G., CLOBERT, J. & BELICHON, S. 1996. Phenotypic plasticity of growth and survival in the common lizard Lacerta vivipara. Journal of Animal Ecology 65:781790.Google Scholar
STAMPS, J. A. 1977. Moisture and dry season growth rates in Anolis aeneus. Copeia 1977:415419.CrossRefGoogle Scholar
STAMPS, J. A. & TANAKA, S. 1981a. The relationship between food and social behavior in juvenile (Anolis aeneus) lizards. Copeia 1981:422434.Google Scholar
STAMPS, J. A. & TANAKA, S. 1981b. The influence of food and water on growth rates in a tropical lizard (Anolis aeneus). Ecology 62:3340.CrossRefGoogle Scholar
STENBACKA, J., HJÄLTÉN, J., HILSZCZANSKI, J. & DYNESIUS, M. 2010. Saproxylic and non-saproxylic beetle assemblages in boreal spruce forests of different age and forestry intensity. Ecological Applications 20:23102321.Google Scholar
THOMAS, G. H., MEIRI, S. & PHILLIMORE, A. B. 2009. Body size diversification in Anolis: novel environment and island effects. Evolution 63:20172030.Google Scholar
TRIVERS, R. L. 1976. Sexual selection and resource-accruing abilities in Anolis garmani. Evolution 30:253269.Google Scholar
VAN DAMME, R. 1999. Evolution of herbivory in lacertid lizards: effects of insularity and body size. Journal of Herpetology 33:663674.Google Scholar
WHEELWRIGHT, N. T., DUKESHIRE, E. E., FONTAINE, J. B., GUTOW, S. H., MOELLER, D. A., SCHUETZ, J. G., SMITH, T. M., RODGERS, S. L. & ZINK, A. G. 2006. Pollinator limitation, autogamy and minimal inbreeding depression in insect-pollinated plants on a boreal island. American Midland Naturalist 155:1938.Google Scholar
WRIGHT, S. J., KIMSEY, R. & CAMPBELL, C. J. 1984. Mortality rates of insular Anolis lizards: a systematic effect of island area? American Naturalist 123:134142.CrossRefGoogle Scholar