Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T18:43:52.094Z Has data issue: false hasContentIssue false

Above-ground biomass and productivity in a rain forest of eastern South America

Published online by Cambridge University Press:  01 July 2008

Jérôme Chave*
Affiliation:
Laboratoire Evolution et Diversité Biologique, CNRS/UPS, Bâtiment 4R3, 118 route de Narbonne, 31062 Toulouse, France
Jean Olivier
Affiliation:
Laboratoire Evolution et Diversité Biologique, CNRS/UPS, Bâtiment 4R3, 118 route de Narbonne, 31062 Toulouse, France
Frans Bongers
Affiliation:
Forest Ecology and Forest Management Group, Centre for Ecosystem Studies, Wageningen University, P.O. Box 47, 6700 AH Wageningen, The Netherlands
Patrick Châtelet
Affiliation:
CNRS-Guyane UPS 2651, Station d'Etudes des Nouragues, French Guiana, France
Pierre-Michel Forget
Affiliation:
Département Ecologie et Gestion de la Biodiversité, UMR 5176 CNRS-MNHN, 4 av. du Petit Château, F-91800 Brunoy, France
Peter van der Meer
Affiliation:
Forest Ecology and Forest Management Group, Centre for Ecosystem Studies, Wageningen University, P.O. Box 47, 6700 AH Wageningen, The Netherlands Alterra, Centre for Ecosystem Studies, Wageningen University and Research Centre, P.O. Box 47, 6700 AH Wageningen, The Netherlands
Natalia Norden
Affiliation:
Laboratoire Evolution et Diversité Biologique, CNRS/UPS, Bâtiment 4R3, 118 route de Narbonne, 31062 Toulouse, France
Bernard Riéra
Affiliation:
Département Ecologie et Gestion de la Biodiversité, UMR 5176 CNRS-MNHN, 4 av. du Petit Château, F-91800 Brunoy, France
Pierre Charles-Dominique
Affiliation:
CNRS-Guyane UPS 2651, Station d'Etudes des Nouragues, French Guiana, France
*
1Corresponding author. [email protected]

Abstract

The dynamics of tropical forest woody plants was studied at the Nouragues Field Station, central French Guiana. Stem density, basal area, above-ground biomass and above-ground net primary productivity, including the contribution of litterfall, were estimated from two large permanent census plots of 12 and 10 ha, established on contrasting soil types, and censused twice, first in 1992–1994, then again in 2000–2002. Mean stem density was 512 stems ha−1 and basal area, 30 m2 ha−1. Stem mortality rate ranged between 1.51% and 2.06% y−1. In both plots, stem density decreased over the study period. Using a correlation between wood density and wood hardness directly measured by a Pilodyn wood tester, we found that the mean wood density was 0.63 g cm−3, 12% smaller than the mean of wood density estimated from the literature values for the species occurring in our plot. Above-ground biomass ranged from 356 to 398 Mg ha−1 (oven-dry mass), and it increased over the census period. Leaf biomass was 6.47 Mg ha−1. Our total estimate of aboveground net primary productivity was 8.81 MgC ha−1 y−1 (in carbon units), not accounting for loss to herbivory, branchfalls, or biogenic volatile organic compounds, which may altogether account for an additional 1 MgC ha−1 y−1. Coarse wood productivity (stem growth plus recruitment) contributed to 4.16 MgC ha−1 y−1. Litterfall contributed to 4.65 MgC ha−1 y−1 with 3.16 MgC ha−1 y−1 due to leaves, 1.10 MgC ha−1 y−1 to twigs, and 0.39 MgC ha−1 y−1 to fruits and flowers. The increase in above-ground biomass for both trees and lianas is consistent with the hypothesis of a shift in the functioning of Amazonian rain forests driven by environmental changes, although alternative hypotheses such as a recovery from past disturbances cannot be ruled out at our site, as suggested by the observed decrease in stem density.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BAKER, T. R., PHILLIPS, O. L., MALHI, Y., ALMEIDA, S., ARROYO, L., DI FIORE, A., HIGUCHI, N., KILLEEN, T. J., LAURANCE, S. G., LAURANCE, W. F., LEWIS, S. L., LLOYD, J., MONTEAGUDO, A., NEILL, D. A., PATIÑO, S., PITMAN, N. C. A., SILVA, N. & VÁSQUEZ MARTÍNEZ, R. 2004. Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10:545562.CrossRefGoogle Scholar
BONAL, D., BOSC, A., GORET, J.-Y., BURBAN, B., GROSS, P., BONNEFOND, J.-M., ELBERS, J., PONTON, S., EPRON, D., GUEHL, J.-M. & GRANIER, A. 2008. Severe dry periods are associated with higher net ecosystem carbon storage in the Neotropical rainforest of French Guiana. Global Change Biology, in press.CrossRefGoogle Scholar
BONGERS, F., CHARLES-DOMINIQUE, P., FORGET, P.-M. & THÉRY, M. 2001. Nouragues: dynamics and plant animal interactions in a neotropical rain forest. Kluwer, Boston. 421 pp.CrossRefGoogle Scholar
BROWN, S. 1997. Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper 134, Rome. 55 pp.Google Scholar
BROWN, S. & GASTON, G. 1995. Use of forest inventories and geographic information systems to estimate biomass density of tropical forests: application to tropical Africa. Environmental Monitoring and Assessment 38:157168.CrossRefGoogle ScholarPubMed
CAIRNS, M. A., BROWN, S., HELMER, E. H. & BAUMGARDNER, G. A. 1997. Root biomass allocation in the world's upland forests. Oecologia 111:111.CrossRefGoogle ScholarPubMed
CAMPBELL, E. J. F. & NEWBERY, D. M. 1993. Ecological relationships between lianas and trees in lowland rain forest in Sabah, East Malaysia. Journal of Tropical Ecology 9:469490.CrossRefGoogle Scholar
CHARLES-DOMINIQUE, P., BLANC, P., LARPIN, D., LEDRU, M. P., RIÉRA, B., SARTHOU, C., SERVANT, M. & TARDY, C. 1998. Forest perturbations and biodiversity during the last ten thousand years in French Guiana. Acta Oecologica 19:295302.CrossRefGoogle Scholar
CHARLES-DOMINIQUE, P., CHAVE, J., DUBOIS, M.-A., RIÉRA, B. & VEZZOLI, C. 2003. Evidence of a colonization front of the palm Astrocaryum sciophilum, a possible indicator of palaeoenvironmental changes in French Guiana. Global Ecology and Biogeography 12:237248.CrossRefGoogle Scholar
CHAVE, J., RIÉRA, B. & DUBOIS, M. A. 2001. Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability. Journal of Tropical Ecology 17:7996.CrossRefGoogle Scholar
CHAVE, J., CONDIT, R., LAO, S., CASPERSEN, J. P., FOSTER, R. B. & HUBBELL, S. P. 2003. Spatial and temporal variation in biomass of a tropical forest: results from a large census plot in Panama. Journal of Ecology 91:240252.CrossRefGoogle Scholar
CHAVE, J., CONDIT, R., AGUILAR, S., HERNANDEZ, A., LAO, S. & PEREZ, R. 2004. Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society of London B 359:409420.CrossRefGoogle ScholarPubMed
CHAVE, J., ANDALO, C., BROWN, S., CAIRNS, M. A., CHAMBERS, J. Q., EAMUS, D., FÖLSTER, H., FROMARD, F., HIGUCHI, N., KIRA, T., LESCURE, J.-P., PUIG, H., RIÉRA, B. & YAMAKURA, T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:8799.CrossRefGoogle ScholarPubMed
CHAVE, J., MULLER-LANDAU, H. C., BAKER, T. R., EASDALE, T., TER STEEGE, H. & WEBB, C. O. 2006. Regional and phylogenetic variation of wood density across 2,456 neotropical tree species. Ecological Applications 16:23562367.CrossRefGoogle Scholar
CHAVE, J., CONDIT, R., MULLER-LANDAU, H. C., THOMAS, S. C., ASHTON, P. S., BUNYAVEJCHEWIN, S., CO, L. L., DATTARAJA, H. S., DAVIES, S. J., ESUFALI, S., EWANGO, C. E. N., FEELEY, K. J., FOSTER, R. B., GUNATILLEKE, N., GUNATILLEKE, S., HALL, P., HART, T. B., HERNÁNDEZ, C., HUBBELL, S. P., ITOH, A., KIRATIPRAYOON, S., LAFRANKIE, J. V., LOO DE LAO, S., MAKANA, J.-R., NUR SUPARDI NOOR, MD., RAHMAN KASSIM, A., SAMPER, C., SUKUMAR, R., SURESH, H. S., TAN, S., THOMPSON, J., TONGCO, MA. D. C., VALENCIA, R., VALLEJO, M., VILLA, G., YAMAKURA, T., ZIMMERMAN, J. K. & LOSOS, E. C. 2008. Assessing evidence for a pervasive alteration in tropical tree communities. PLoS Biology 6:e45.CrossRefGoogle ScholarPubMed
CLARK, D. A. 2002. Are tropical forests an important carbon sink? Reanalysis of long-term plot data. Ecological Applications 12:37.CrossRefGoogle Scholar
CLARK, D. A., BROWN, S., KICKLIGHTER, D., CHAMBERS, J. Q., THOMLINSON, J. R. & NI, J. 2001a. Measuring net primary production in forests: concepts and field methods. Ecological Applications 11:356370.CrossRefGoogle Scholar
CLARK, D. A., BROWN, S., KICKLIGHTER, D., CHAMBERS, J. Q., THOMLINSON, J. R., NI, J. & HOLLAND, E. A. 2001b. Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecological Applications 11:371384.CrossRefGoogle Scholar
DE GRAAF, N. R., POELS, R. L. H. & VAN ROMPAEY, R. S. A. R. 1999. Effect of silvicultural treatment on growth and mortality of rainforest in Surinam over long periods. Forest Ecology and Management 124:123135.CrossRefGoogle Scholar
DEWALT, S. J. & CHAVE, J. 2004. Structure and biomass of four Neotropical forests. Biotropica 36:719.Google Scholar
DIXON, R. K., BROWN, S., HOUGHTON, R. A., SOLOMON, A. M., TREXLER, M. C. & WISNIEWSKI, J. 1994. Carbon pools and flux of global forest ecosystems. Science 263:185190.CrossRefGoogle ScholarPubMed
ELIAS, M. & POTVIN, C. 2003. Assessing inter- and intra-specific variation in trunk carbon concentration for 32 neotropical tree species. Canadian Journal of Forest Research 33:10391045.CrossRefGoogle Scholar
EVA, H., DE MIRANDA, E., DI BELLA, C., GOND, V., JONES, S., ACHARD, F. & BELWARD, A. 2002. A vegetation map of South America. Environment series EUR 20159EN, European Commission, Luxembourg. 41 pp.Google Scholar
FAVRICHON, V., DAMIO, T., DOUMBIA, F., DUPUY, B., HIGUCHI, N., KOKASI KADIR, K., MAÎTRE, H. F., NGUYEN THE, N., PETRUCCI, Y. & SIST, P. 1997. Réaction de peuplements forestiers tropicaux à des interventions sylvicoles. Bois et Forêts des Tropiques 254: 524.Google Scholar
FIELD, C. B., BEHRENFELD, M. J., RANDERSON, J. T. & FALKOWSKI, P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237240.CrossRefGoogle ScholarPubMed
GOLLEY, F. B. & LIETH, H. 1972 (eds). Tropical ecology with emphasis on organic production. University of Georgia, Athens. 248 pp.Google Scholar
GRACE, J. 2004. Understanding and managing the global carbon cycle. Journal of Ecology 92:189202.CrossRefGoogle Scholar
GRIMALDI, M. & RIÉRA, B. 2001. Geography and climate. Pp. 918 in Bongers, F., Charles-Dominique, P., Forget, P.-M. & Théry, M. (eds). Nouragues: dynamics and plant animal interactions in a neotropical rain forest. Kluwer, Boston.CrossRefGoogle Scholar
GÜNTHER, A., HEWITT, C. N., ERICKSON, D., FALL, R., GERON, C., GRAEDEL, T., HARLEY, P., KLINGER, L., LERDAU, M., MCKAY, W. A., PIERCE, T., SCHOLES, B., STEINBRECHER, R., TALLAMRAJU, R., TAYLOR, J. & ZIMMERMAN, P. 1995. A global model of natural volatile organic compound emissions. Journal of Geophysical Research 100:88738892.CrossRefGoogle Scholar
HOUGHTON, R. A., LAWRENCE, K. L., HACKLER, J. L. & BROWN, S. 2001. The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Global Change Biology 7:731746.CrossRefGoogle Scholar
LAURANCE, W. F., FEARNSIDE, P. M., LAURANCE, S. G., DELAMONICA, P., LOVEJOY, T. E., RANKIN-DE MERONA, J. M., CHAMBERS, J. Q. & GASCON, C. 1999. Relationship between soils and Amazon forest biomass: a landscape-scale study. Forest Ecology and Management 118:127138.CrossRefGoogle Scholar
LEWIS, S. L., PHILLIPS, O. L., BAKER, T. R., LLOYD, J., MALHI, Y., ALMEIDA, S., HIGUCHI, N., LAURANCE, W. F., NEILL, D., SILVA, N., TERBORGH, J., TORRES LEZAMA, A., VÁSQUEZ, M. R., BROWN, S., CHAVE, J., KUEBLER, C., NÚÑEZ, P. & VINCETI, B. 2004. Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. Philosophical Transactions of the Royal Society of London B 359:421436.CrossRefGoogle ScholarPubMed
LOESCHER, H. W., OBERBAUER, S. F., GHOLZ, H. L. & CLARK, D. B. 2003. Environmental controls on net ecosystem-level carbon exchange and productivity in a Central American tropical wet forest. Global Change Biology 9:396412.CrossRefGoogle Scholar
LUGO, A. E. & BROWN, S. 1992. Tropical forests as sinks of atmospheric carbon. Forest Ecology and Management 54:239255.CrossRefGoogle Scholar
MALHI, Y., BAKER, T. R., PHILLIPS, O. L., ALMEIDA, S., ALVAREZ, E., ARROYO, L., CHAVE, J., CZIMCZIK, C. I., DI FIORE, A., HIGUCHI, N., KILLEEN, T.J., LAURANCE, S.G., LAURANCE, W.F., LEWIS, S. L., MONTOYA, L. M. M., MONTEAGUDO, A., NEILL, D. A., NUNEZ, V. P., PATIÑO, S., PITMAN, N. C. A., QUESADA, C. A., SILVA, J. N. M., LEZAMA, A. T., VASQUEZ MARTINEZ, R., TERBORGH, J., VINCETI, B. & LLOYD, J. 2004. The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology 10:563591.CrossRefGoogle Scholar
MALHI, Y., WOOD, D., BAKER, T. R., WRIGHT, J., PHILLIPS, O. L., COCHRANE, T., MEIR, P., CHAVE, J., ALMEIDA, S., ARROYO, L., HIGUCHI, N., KILLEEN, T. J., LAURANCE, S. G., LAURANCE, W. F., LEWIS, S. L., MONTEAGUDO, A., NEILL, D. A., NÚÑEZ VARGAS, P., PITMAN, N. C. A., QUESADA, C. A., SALOMÃO, R., SILVA, J. N. M., TORRES LEZAMA, A., TERBORGH, J., VÁSQUEZ MARTÍNEZ, R. & VINCETI, B. 2006. The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biology 12:11071138.CrossRefGoogle Scholar
MALHI, Y., ROBERTS, J. T., BETTS, R. A., KILLEEN, T. J., LI, W. & NOBRE, C. A. 2008. Climate change, deforestation, and the fate of the Amazon. Science 319:169172.CrossRefGoogle ScholarPubMed
MULLER-LANDAU, H. C. 2004. Interspecific and intersite variation in wood density of tropical trees. Biotropica 36:2032.Google Scholar
NOGUEIRA, E. M., FEARNSIDE, P. M. & NELSON, B. W. 2005. Wood density in dense forest in central Amazonia, Brazil. Forest Ecology and Management 208:261286.CrossRefGoogle Scholar
PHILLIPS, O. L. & GENTRY, A. H. 1994. Increasing turnover through time in tropical forests. Science 263:954958.CrossRefGoogle ScholarPubMed
PHILLIPS, O. L., MALHI, Y., HIGUCHI, N., LAURANCE, W. F., NUÑEZ, P. V., VÁSQUEZ, R. M., LAURANCE, S. G., FERREIRA, L. V., STERN, M., BROWN, S. & GRACE, J. 1998. Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439442.CrossRefGoogle ScholarPubMed
PHILLIPS, O. L., MALHI, Y., VINCETI, B., BAKER, T., LEWIS, S. L., HIGUCHI, N., LAURANCE, W. F., NUNEZ, V. P., VASQUEZ, M. R., LAURANCE, S. G., FERREIRA, L. V., STERN, M., BROWN, S. & GRACE, J. 2002. Changes in the biomass of tropical forests: evaluating potential biases. Ecological Applications 12:576587.CrossRefGoogle Scholar
PONCY, O., SABATIER, D., PRÉVOST, M.-F. & HARDY, I. 2001. The lowland high rainforest: structure and tree species diversity. Pp. 3146 in Bongers, F., Charles-Dominique, P., Forget, P.-M. & Théry, M. (eds). Nouragues: dynamics and plant animal interactions in a neotropical rain forest. Kluwer, Boston.CrossRefGoogle Scholar
SAATCHI, S. S., HOUGHTON, R. A., DOS SANTOS ALVALÁ, R. C., SOARES, J. V. & YU, Y. 2007. Distribution of aboveground live biomass in the Amazon basin. Global Change Biology 13:816837.CrossRefGoogle Scholar
SABATIER, D. & PRÉVOST, M.-F. 1990. Variations du peuplement forestier à l'échelle stationnelle: le cas de la station des Nouragues en Guyane Française. Atelier MAB-IUFRO Cayenne. 19 pp.Google Scholar
SALESKA, S. R., MILLER, S. D., MATROSS, D. M., GOULDEN, M. L., WOFSY, S. C., DA ROCHA, H. R., DE CAMARGO, P. B., CRILL, P., DAUBE, B. C., DE FREITAS, H. C., HUTYRA, L., KELLER, M., KIRCHHOFF, V., MENTON, M., MUNGER, J. W., HAMMOND PYLE, E., RICE, A. H. & SILVA, H. 2003. Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:15541557.CrossRefGoogle ScholarPubMed
SCHNITZER, S. A. & BONGERS, F. 2002. The ecology of lianas and their role in forests. Trends in Ecology and Evolution 17:223230.CrossRefGoogle Scholar
SCHNITZER, S. A., KUZEE, M. E. & BONGERS, F. 2005. Disentangling above- and below-ground competition between lianas and trees in a tropical forest. Journal of Ecology 93:11151125.CrossRefGoogle Scholar
SCHNITZER, S. A., DEWALT, S. J. & CHAVE, J. 2006. Censusing and measuring lianas: a quantitative comparison of the common methods. Biotropica 38:581591.CrossRefGoogle Scholar
SCHUUR, E. A. G. 2003. Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation. Ecology 84:11651170.CrossRefGoogle Scholar
SHEIL, D. 1995. A critique of permanent plot methods and analysis with examples from Budongo forest, Uganda. Forest Ecology and Management 77:1134.CrossRefGoogle Scholar
SHEIL, D. & MAY, R. M. 1996 Mortality and recruitment rate evaluations in heterogeneous tropical forests. Journal of Ecology 84:91100.CrossRefGoogle Scholar
STEPHENS, B. B., GURNEY, K. R., TANS, P. P., SWEENEY, C., PETERS, W., AOKI, S., MACHIDA, T., INOUE, G., VINNICHENKO, N., LLOYD, J., JORDAN, A., HEIMANN, M., SHIBISTOVA, O., LANGENFELDS, R. L., STEELE, L. P., FRANCEY, R. J. & DENNING, A. S. 2007. Weak Northern and strong tropical carbon uptake from vertical profiles of atmospheric CO2. Science 316:17321735.CrossRefGoogle ScholarPubMed
TURNER, D. P., RITTS, W. D., COHEN, W. B., MAEIRSPERGER, T. K., GOWER, S. T., KIRSCHBAUM, A., RUNNING, S. W., ZHAO, M., WOFSY, S. C., DUNN, A. L., LAW, B. E., CAMPBELL, J. C., OECHEL, W. C., KWON, H. J., MEYERS, T. P., SMALL, E. E., KURC, S. A. & GAMON, J. A. 2005. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring. Global Change Biology 11:666684.CrossRefGoogle Scholar
VAN DER MEER, P. J. & BONGERS, F. 1996a. Patterns of treefalls and branchfalls in a tropical rain forest in French Guiana. Journal of Ecology 84:1929.CrossRefGoogle Scholar
VAN DER MEER, P. J. & BONGERS, F. 1996b. Formation and closure of canopy gaps in the rain forest at Nouragues, French Guiana. Vegetatio 126:167179.CrossRefGoogle Scholar
WIEMANN, M. C. & WILLIAMSON, G. B. 2002. Geographic variation in wood specific gravity: effects of latitude, temperature, and precipitation. Wood and Fiber Science 34:96107.Google Scholar