Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-15T17:16:43.022Z Has data issue: false hasContentIssue false

δ13C in Pentaclethra macroloba trees growing at forest edges in north-eastern Costa Rica

Published online by Cambridge University Press:  01 January 2008

Jessica L. Schedlbauer*
Affiliation:
Department of Forest Resources, University of Idaho, P.O. Box 441133, Moscow, ID 83844-1133, USA Departamento Recursos Naturales y Ambiente, Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Sede Central 7170, Turrialba, Costa Rica
Kathleen L. Kavanagh
Affiliation:
Department of Forest Resources, University of Idaho, P.O. Box 441133, Moscow, ID 83844-1133, USA
*
1Corresponding author. Current address: Department of Biological Sciences, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA. Email: [email protected]

Abstract

Fragmented forest landscapes with large proportions of edge area are common in the tropics, though little is known about functional responses of trees to edge effects. Foliar δ13C can increase our understanding of tree function, as these values reflect changes in ci/ca as trees respond to environmental gradients. We expected that foliar δ13C would be enriched, indicating a decline in ci/ca, in Pentaclethra macroloba trees growing at forest edges in north-eastern Costa Rica. We also anticipated this isotopic shift in δ13C values of soil carbon and soil respired CO2. Three transects perpendicular to forest edges were established at three study sites, and six plots per transect were located 0–300 m from edges. Within plots, foliage, soil and soil respired CO2 were collected for isotopic analyses. Foliar δ13C, thus ci/ca, and soil carbon δ13C did not vary along the edge to interior gradient. δ13C for canopy and understorey foliage averaged −29.7‰ and −32.5‰, respectively, while soil carbon δ13C averaged −28.0‰. Soil respired CO2 δ13C ranged from −29.2‰ to −28.6‰ and was significantly depleted within 50 m of edges. The predominant lack of functional responses at forest edges indicates that P. macroloba trees are robust and these forests are minimally influenced by edge effects.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BONAL, D., SABATIER, D., MONTPIED, P., TREMEAUX, D. & GUEHL, J. M. 2000a. Interspecific variability of δ13C among trees in rainforests of French Guiana: functional groups and canopy integration. Oecologia 124:454468.CrossRefGoogle ScholarPubMed
BONAL, D., BARIGAH, T. S., GRANIER, A. & GUEHL, J. M. 2000b. Late-stage canopy tree species with extremely low δ13C and high stomatal sensitivity to seasonal soil drought in the tropical rainforest of French Guiana. Plant, Cell and Environment 23:445459.CrossRefGoogle Scholar
BOX, G. E. P. & COX, D. R. 1964. An analysis of transformations. Journal of the Royal Statistical Society, Series B 26:211252.Google Scholar
BUCHMANN, N., BROOKS, J. R. & EHLERINGER, J. R. 2002. Predicting daytime carbon isotope ratios of atmospheric CO2 within forest canopies. Functional Ecology 16:4957.CrossRefGoogle Scholar
BUCHMANN, N., GUEHL, J.-M., BARIGAH, T. S. & EHLERINGER, J. R. 1997. Interseasonal comparison of CO2 concentrations, isotopic composition, and carbon dynamics in an Amazonian rainforest (French Guiana). Oecologia 110:120131.CrossRefGoogle Scholar
BUTTERFIELD, R. P. 1994. The regional context: land colonization and conservation in Sarapiquí. Pp. 299306 in McDade, L. A., Bawa, K. S., Hespenheide, H. A. & Hartshorn, G. S. (eds.). La Selva: ecology and natural history of a neotropical rain forest. The University of Chicago Press, Chicago.Google Scholar
CERLING, T. E., SOLOMAN, D. K., QUADE, J. & BOWMAN, J. R. 1991. On the isotopic composition of carbon in soil carbon dioxide. Geochimica et Cosmochimica Acta 55:34033405.CrossRefGoogle Scholar
CERNUSAK, L. A., FARQUHAR, G. D., WONG, S. C. & STUART-WILLIAMS, H. 2004. Measurement and interpretation of the oxygen isotope composition of carbon dioxide respired by leaves in the dark. Plant Physiology 136:33503363.CrossRefGoogle ScholarPubMed
CHEN, J., FRANKLIN, J. F. & SPIES, T. A. 1995. Growing-season microclimatic gradients from clearcut edges into old-growth forests. Ecological Applications 5:7486.CrossRefGoogle Scholar
CLARK, D. A. & CLARK, D. B. 2001. Getting to the canopy: tree height growth in a Neotropical rain forest. Ecology 82:14601472.CrossRefGoogle Scholar
CLARK, D. B. & CLARK, D. A. 2000. Landscape-scale variation in forest structure and biomass in a tropical rain forest. Forest Ecology and Management 137:185198.CrossRefGoogle Scholar
DENSLOW, J. S. & HARTSHORN, G. S. 1994. Tree-fall gap environments and forest dynamic processes. Pp. 120127 in McDade, L. A., Bawa, K. S., Hespenheide, H. A. & Hartshorn, G. S. (eds.). La Selva: ecology and natural history of a neotropical rain forest. The University of Chicago Press, Chicago.Google Scholar
DUURSMA, R. A. & MARSHALL, J. D. 2006. Vertical canopy gradients in δ13C correspond with leaf nitrogen content in a mixed-species conifer forest. Trees 20:496506.CrossRefGoogle Scholar
EHLERINGER, J. R., FIELD, C. B., LIN, Z. & KUO, C. 1986. Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline. Oecologia 70:520526.CrossRefGoogle ScholarPubMed
EKBLAD, A. & HÖGBERG, P. 2001. Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 127:305308.CrossRefGoogle ScholarPubMed
EKBLAD, A., BOSTRÖM, B., HOLM, A. & COMSTEDT, D. 2005. Forest soil respiration rate and δ13C is regulated by recent above ground weather conditions. Oecologia 143:136142.CrossRefGoogle ScholarPubMed
EVANS, J. R. & SEEMANN, J. R. 1989. The allocation of protein nitrogen in the photosynthetic apparatus: costs, consequences, and control. Pp. 183205 in Briggs, W. R. (ed). Photosynthesis. Alan R. Liss, Inc., New York.Google ScholarPubMed
FIELD, C. & MOONEY, H. A. 1986. The photosynthesis – nitrogen relationship in wild plants. Pp. 2555 in Givnish, T. J. (ed.). On the economy of plant form and function. Cambridge University Press, New York. 736 pp.Google Scholar
FORERO, A. & FINEGAN, B. 2002. Efectos de borde en la vegetación de remanentes de bosque muy húmedo tropical en el norte de Costa Rica, y sus implicaciones para el manejo y la conservación. Revista Forestal Centroamericana 38:3943.Google Scholar
HANBA, Y. T., MORI, S., LEI, T. T., KOIKE, T. & WADA, E. 1997. Variations in leaf δ13C along a vertical profile of irradiance in a temperate Japanese forest. Oecologia 110:253261.CrossRefGoogle Scholar
HANBA, Y. T., MIYAZAWA, S.-I. & TERASHIMA, I. 1999. The influence of leaf thickness on the CO2 transfer conductance and leaf stable carbon isotope ratio for some evergreen tree species in Japanese warm-temperate forests. Functional Ecology 13:632639.CrossRefGoogle Scholar
HUC, R., FERHI, A. & GUEHL, J. M. 1994. Pioneer and late stage tropical rainforest tree species (French Guiana) growing under common conditions differ in leaf gas exchange regulation, carbon isotope discrimination and leaf water potential. Oecologia 99:297305.CrossRefGoogle ScholarPubMed
ITCR. 2004. Atlas Digital Costa Rica 2004. Instituto Tecnológico de Costa Rica, Cartago.Google Scholar
KAPOS, V. 1989. Effects of isolation on the water status of forest patches in the Brazilian Amazon. Journal of Tropical Ecology 5:173185.CrossRefGoogle Scholar
KAPOS, V., GANADE, G., MATSUI, E. & VICTORIA, R. L. 1993. δ13C as an indicator of edge effects in tropical rainforest reserves. Journal of Ecology 81:425432.CrossRefGoogle Scholar
LAMBERS, H., Chapin, F. S. & PONS, T. L. 1998. Plant physiological ecology. Springer-Verlag New York, Inc., New York. 540 pp.CrossRefGoogle Scholar
LAURANCE, W. F., LOVEJOY, T. E., VASCONCELOS, H. L., BRUNA, E. M., DIDHAM, R. K., STOUFFER, P. C., GASCON, C., BIERREGAARD, R. O., LAURANCE, S. G. & SAMPAIO, E. 2002. Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conservation Biology 16:605618.CrossRefGoogle Scholar
LIEBERMAN, D., LIEBERMAN, M., PERRALTA, R. & HARTSHORN, G. S. 1996. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. Journal of Ecology 84:137152.CrossRefGoogle Scholar
MEDINA, E. & MINCHIN, P. 1980. Stratification of δ13C values of leaves in Amazonian rain forests. Oecologia 45:377378.CrossRefGoogle ScholarPubMed
NEWMARK, W. D. 2001. Tanzanian forest edge microclimatic gradients: dynamic patterns. Biotropica 33:211.CrossRefGoogle Scholar
OBERBAUER, S. F. 1983. The ecophysiology of Pentaclethra macroloba, a canopy tree species in the rainforests of Costa Rica. Ph.D. thesis. Duke University, Durham. 112 pp.Google Scholar
OBERBAUER, S. F., STRAIN, B. R. & RIECHERS, G. H. 1987. Field water relations of a wet-tropical forest tree species, Pentaclethra macroloba (Mimosaceae). Oecologia 71:369374.CrossRefGoogle ScholarPubMed
PINHEIRO, J. C. & BATES, D. M. 2000. Mixed-effects models in S and S-Plus. Springer-Verlag New York, Inc., New York. 528 pp.CrossRefGoogle Scholar
REICH, P. B., WALTERS, M. B. & ELLSWORTH, D. S. 1992. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs 62:365392.CrossRefGoogle Scholar
REICH, P. B., WALTERS, M. B. & ELLSWORTH, D. S. 1997. From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences, USA 94:1373013734.CrossRefGoogle ScholarPubMed
SANFORD, R. L., PAABY, P., LUBALL, J. C. & PHILLIPS, E. 1994. Climate, geomorphology, and aquatic systems. Pp. 1933 in McDade, L. A., Bawa, K. S., Hespenheide, H. A. & Hartshorn, G. S. (eds.). La Selva: ecology and natural history of a neotropical rain forest. The University of Chicago Press, Chicago.Google Scholar
SCHEDLBAUER, J. L., FINEGAN, B. & KAVANAGH, K. L. 2007. Rainforest structure at forest – pasture edges in northeastern Costa Rica. Biotropica 39:578584.CrossRefGoogle Scholar
STERNBERG, L. S. L., MULKEY, S. S. & WRIGHT, S. J. 1989. Ecological interpretations of leaf carbon isotope ratios: influence of respired carbon dioxide. Ecology 70:13171324.Google Scholar
TERWILLIGER, V. J. 1997. Changes in the δ13C values of trees during a tropical rainy season: some effects in addition to diffusion and carboxylation by Rubisco? American Journal of Botany 84:16931700.CrossRefGoogle ScholarPubMed
TOSI, J. A. 1969. Mapa ecológico, República de Costa Rica: según la clasificación de zonas de vida del mundo de L.R. Holdridge. Tropical Science Center, San José.Google Scholar
WILLIAMS-LINERA, G., DOMÍNGUEZ-GASTELÚ, V. & GARCÍA-ZURITA, M. E. 1998. Microenvironment and floristics of different edges in a fragmented tropical rainforest. Conservation Biology 12:10911102.CrossRefGoogle Scholar