Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T08:52:19.690Z Has data issue: false hasContentIssue false

Use of shell-shape to discriminate between Brachidontes rodriguezii and Brachidontes purpuratus species (Mytilidae) in the transition zone of their distributions (south-western Atlantic)

Published online by Cambridge University Press:  24 September 2012

Silvina Van der Molen*
Affiliation:
Centro Nacional Patagónico CENPAT–CONICET, Boulevard Brown 2915 (U9120ACD), Puerto Madryn, Argentina
Federico Márquez
Affiliation:
Centro Nacional Patagónico CENPAT–CONICET, Boulevard Brown 2915 (U9120ACD), Puerto Madryn, Argentina Universidad Nacional de la Patagonia San Juan Bosco, Blvd Brown 3100, Puerto Madryn (U9120ACD), Chubut, Argentina Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 299, Córdoba (X5000JJC), Córdoba, Argentina
Yanina L Idaszkin
Affiliation:
Centro Nacional Patagónico CENPAT–CONICET, Boulevard Brown 2915 (U9120ACD), Puerto Madryn, Argentina Universidad Nacional de la Patagonia San Juan Bosco, Blvd Brown 3100, Puerto Madryn (U9120ACD), Chubut, Argentina Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 299, Córdoba (X5000JJC), Córdoba, Argentina
Mariana Adami
Affiliation:
Museo de La Plata, Paseo del Bosque s/.n, 1900 La Plata, Argentina
*
Correspondence should be addressed to: S. Van der Molen, Centro Nacional Patagónico CENPAT–CONICET, Boulevard Brown 2915 (U9120ACD), Puerto Madryn, Argentina email: [email protected]

Abstract

Mussels are important components of rocky shore assemblages throughout the world. Several mytilid species are found as multilayered beds in the intertidal along the coasts of the south-western Atlantic. However, in contrast to the north communities in the Pacific and Atlantic, those of the south-western Atlantic are dominated by species of small size, locally named mejillines. These mid-intertidal beds attached to consolidated substrates are dominated by virtual monocultures of two small-sized species of Brachidontes: B. rodriguezii (d'Orbigny, 1842) and B. (Perumytilus) purpuratus Lamarck, 1819, respectively distributed in the warm and cold temperate sectors of the south-western Atlantic; both coexisting in the transition zone between 40° and 44°S latitude. Nevertheless, there has been some confusion about the separation of B. rodriguezii and B. purpuratus, as well as about the boundaries of their distribution ranges in the south-western Atlantic. Here, on the basis of a morphogeometric analysis of shell morphology, we describe a feasible way for the identification of both species.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adami, M.L., Tablado, A. and López Gappa, J.J. (2004) Spatial and temporal variability in intertidal assemblages dominated by the mussel Brachidontes rodriguezii (d'Orbigny, 1846). Hydrobiologia 520, 4959.CrossRefGoogle Scholar
Adami, M.L., Schwindt, E., Verón, P., Tablado, A. and Orensanz, J.M. (2007) Variación latitudinal en la abundancia de mitílidos intermareales a lo largo de un gradiente entre 38° y 54°s en el Atlántico sudoccidental. In Actas de la III Reunión Binacional de Ecología, La Serena, Chile, 30 September–4 October 2007. Sociedad de Ecología de Chile. [Abstract.]Google Scholar
Adami, M.L., Tablado, A. and Sodor, M.A. (2008) Population dynamics of Brachidontes rodriguezii (d'Orbigny, 1846) in Buenos Aires intertidal rocky shore (Argentina). Thalassas 24, 1925.Google Scholar
Aguirre, M.L., Perez, I.S. and Negro Sirch, Y. (2006) Morphological variability of Brachidontes swainson (Bivalvia, Mytilidae) in the marine Quaternary of Argentina (SW Atlantic). Palaeogeography, Palaeoclimatology, Palaeoecology 239, 100125.CrossRefGoogle Scholar
Balech, E. and Ehrlich, M.D. (2008) Esquema biogeográfico del mar argentino. Revista de Investigación y Desarrollo Pesquero (Mar del Plata) 19, 4575.Google Scholar
Bernard, F.R. (1983) Catalogue of the living Bivalvia of the Eastern Pacific Ocean: Bering Strait to Cape Horn. Canadian Special Publication of Fisheries and Aquatic Sciences No. 61, 102 pp.Google Scholar
Cardini, A. and Elton, S. (2011) GEMBID, a geometric morphometric approach to the study of biological diversity: an example study of the red colobus (Procolobus [Piliocolobus]) species complex. International Journal of Primatology 32, 377389.CrossRefGoogle Scholar
Castellanos, Z.J.A. (1967) Catálogo de los moluscos marinos bonaerenses. Anales de la Comisión de Investigación Científica de la Provincia de Buenos Aires (CIC) 8, 1365.Google Scholar
Commito, J.A. and Rusignuolo, B.R. (2000) Structural complexity in mussel beds: the fractal geometry of surface topography. Journal of Experimental Marine Biology and Ecology 255, 133152.CrossRefGoogle ScholarPubMed
Costa, C., Aguzzi, J., Menesatti, P., Antonucci, F., Rimatori, V. and Mattoccia, M. (2008) Shape analysis of different populations of clams in relation to their geographical structure. Journal of Zoology 276, 7180.CrossRefGoogle Scholar
Costa, C., Menesatti, P., Aguzzi, J., D'Andrea, S., Antonucci, F., Rimatori, V., Pallottino, P. and Mattoccia, M. (2010) External shape differences between sympatric populations of commercial clams Tapes decussatus and T. philippinarum . Food and Bioprocess Technology 3, 4348.Google Scholar
Crampton, J.S. (1995) Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28, 179186.CrossRefGoogle Scholar
Cuevas, J.M., Martin, J.P. and Bastida, R. (2006) Benthic community changes in a Patagonian intertidal: a forty years later comparison. Thalassas International Journal 22, 2937.Google Scholar
De Maesschalck, R., Estienne, F., Verdú-André, S.J., Candolfi, A., Centner, V., Despagne, F., Jouan-Rimbaud, D., Walczak, B., Massart, D.L., De Jong, S., De Noord, O.E., Puel, C. and Vandeginste, B.M.G. (1999) The development of calibration models for spectroscopic data using principal component regression. Internet Journal of Chemistry 2, 119.Google Scholar
Ferson, S., Rohlf, F.J. and Koehn, R.K. (1985) Measuring shape variation of two- dimensional outlines. Systematic Zoology 34, 5968.Google Scholar
Freeman, H. (1974) Computer processing of line-drawing images. ACM Computer Surveys 6, 5797.Google Scholar
Guiñez, R. and Castilla, J.C. (1999) A tridimensional self-thinning model for multilayered intertidal mussels. American Naturalist 154, 341357.CrossRefGoogle ScholarPubMed
Gordillo, S., Márquez, F., Cárdenas, J. and Zubimendi, M.Á. (2011) Shell variability in Tawera gayi (Veneridae) from southern South America: a morphometric approach based on contour analysis. Journal of the Marine Biological Association of the United Kingdom 91, 815822.Google Scholar
Innes, D.J. and Bates, J.A. (1999) Morphological variation of Mytilus edulis and Mytilus trossulus in eastern Newfoundland. Marine Biology 133, 691699.CrossRefGoogle Scholar
Iwata, H. and Ukai, Y. (2002) SHAPE: a computer program package for quantitative evaluation of biological shapes based on elliptical Fourier descriptors. Journal of Heredity 93, 384385.CrossRefGoogle Scholar
Klappenbach, M.A. (1965) Lista preliminar de los Mytilidae brasileños con claves para su determinación y notas sobre su distribución. Anais da Academia Brasileira de Ciencias 37, 327352.Google Scholar
Krapivka, S., Toro, J.E., Alcapán, A.C., Astorga, M., Presa, P., Pérez, M. and Guiñez, R. (2007) Shell-shape variation along the latitudinal range of the Chilean blue mussel Mytilus chilensis (Hupe 1854). Aquaculture Research 38, 17701777.Google Scholar
Kuhl, F.P. and Giardina, C.R. (1982) Elliptic Fourier features of a closed contour. ComputerGraphics and Image Processing 18, 236258.Google Scholar
Lestrel, P.E. (1997) Fourier descriptors and their applications in biology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
López Gappa, J.J., Tablado, A. and Magaldi, N.H. (1990) Influence of sewage pollution on a rocky intertidal community dominated by the mytilid Brachidontes rodriguezii . Marine Ecology Progress Series 63, 163175.Google Scholar
Márquez, F., Robledo, J., Escati Peñalosa, G. and Van der Molen, S. (2010) Use of different geometric morphometrics tools for the discrimination of phenotypic stocks of the striped clam Ameghinomya antiqua (Veneridae) in San José Gulf, Patagonia, Argentina. Fisheries Research 101, 127131.CrossRefGoogle Scholar
Márquez, F. and Van der Molen, S. (2011) Intraspecific shell shape variation in the razor clam Ensis macha (Molina, 1782) along the Patagonian coast. Journal of Molluscan Studies 77, 123128.Google Scholar
Nalesso, R.C. and Duarte, L.F.L. (1992) Phenotypic plasticity in Brachidontes darwinianus (Bivalvia: Mytilidae). Revista Brasileira de Biologia 52, 245249.Google Scholar
Palmer, M., Pons, G.X. and Linde, M. (2004) Discriminating between geographical groups of a Mediterranean commercial clam (Chamelea gallina (L.): Veneridae) by shape analysis. Fisheries Research 67, 9398.CrossRefGoogle Scholar
Penchaszadeh, P.E. (1973) Ecología de la comunidad del mejillín (Brachydontes rodriguezi d'Orb.) en el mediolitoral rocoso de Mar del Plata (Argentina): el proceso de recolonización. Physis 32, 5164.Google Scholar
Penchaszadeh, P.E., Pastorino, G. and Brogger, M.I. (2008) Moluscos gasterópodos y bivalvos. In Boltovskoy, D. (ed.) Atlas de sensibilidad ambiental del mar y de la costa. www.atlas.ambiente.gov.ar (accessed 13 June 2012).Google Scholar
Pérez, M., Guíñez, R., Llavona, A., Toro, J.E., Astorga, M. and Presa, P. (2008) Development of microsatellite markers for the ecosystem bioengineer mussel Perumytilus purpuratus and cross-priming testing in six Mytilinae genera. Molecular Ecology Resources 8, 449451.Google Scholar
Prado, L. and Castilla, J.C. (2006) The bioengineer Perumitylus purpuratus (Mollusca: Bivalvia) in central Chile: biodiversity, habitat structural complexity and environmental heterogeneity. Journal of the Marine Biological Association of the United Kingdom 86, 417421.CrossRefGoogle Scholar
Rios, E.C. (1994) Seashells of Brazil. 2nd edition. Rio Grande do Sul: Museu Oceanográfico da FURG.Google Scholar
Rohlf, F.J. and Archie, J.W. (1984) A comparison of Fourier methods for description of wing shape in mosquitos (Diptera: Culicidae). Systematic Zoology 33, 302317.Google Scholar
Rufino, M., Gaspar, M.B., Pereira, A.M. and Vasconcelos, P. (2006) Use of shape to distinguish Chamelea gallina and Chamelea striatula (Bivalvia: Veneridae): linear and geometric morphometric methods. Journal of Morphology 267, 14331440.Google Scholar
Rufino, M., Vasconcelos, P., Pereira, F., Fernández-Tajes, J., Darriba, S., Méndez, J. and Gaspar, M.B. (2012) Geographical variation in shell shape of the pod razor shell Ensis siliqua (Bivalvia: Pharidae). Helgoland Marine Research. DOI 10.1007/s10152-012-0303-6.Google Scholar
Scarabino, V. (1977) Moluscos del Golfo San Matías (Provincia de Río Negro, República Argentina). Comunicaciones de la Sociedad Malacológica de Uruguay (Montevideo) 4, 177286.Google Scholar
Scarabino, F., Zaffaroni, J.C., Clavijo, C., Carranza, A. and Nin, M. (2006) Bivalvos marinos y estuarinos de la costa uruguaya: faunística, distribución, taxonomía y conservación. In Menafra, R., Rodríguez-Gallego, L., Scarabino, F. and Conde, D. (eds) Bases para la Conservación y el Manejo de la Costa Uruguaya. Montevideo, Uruguay: Vida Silvestre, pp. 157170.Google Scholar
Tanaka, M.O. and Magalhães, C.A. (1999) Morphometric species recognition in Brachidontes darwinianus and Brachidontes solisianus (Bivalvia: Mytilidae). Veliger 42, 267274.Google Scholar
Trovant, B., Ruzzante, D.E., Basso, N.G. and Orensanz, J.M. (2011) Antitropicalidad en Mejillines del género Brachidontes (Bivalvia: Mytilidae) en el Atlántico Occidental: Observaciones Moleculares. In Bigatti, G. and Van der Molen, S. (eds) Resúmenes del VIII Congreso Latinoamericano de Malacología, Puerto Madryn, Argentina 14–17 June 2011, 281 pp. [Abstract.]Google Scholar