Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T06:04:18.690Z Has data issue: false hasContentIssue false

Ultrastructure of the hepatopancreas of the Pacific white shrimp, Penaeus vannamei (Crustacea: Decapoda)

Published online by Cambridge University Press:  11 May 2009

Thomas Caceci
Affiliation:
Department of Veterinary Biosciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, U.S.A.
Kay F. Neck
Affiliation:
Department of Veterinary Anatomy
Donal D H. Lewis
Affiliation:
Department of Veterinary Microbiology and Parasitology, Texas Veterinary Medical Center, Texas A & M University, College Station, Texas 77843, U.S.A.
Raymond F. Sis
Affiliation:
Department of Veterinary Anatomy

Abstract

Fourteen specimens of the hepatopancreas of the Pacific white shrimp, Penaeus vannamei, were prepared for examination with the transmission and scanning electron microscopes and with the light microscope. The histology and ultrastructure of this organ is similar to that seen in other Decapoda. At the ultrastructural level, it was observed that B-cells rupture at approximately the level of gap junctions located on the lateral plasma membranes of the cells, and discharge the contents of their large vacuoles into the intercellular space. This efflux of enzymatic material may be the mechanism by which cells are released from the wall of the tubule at the proximal end: the rupture and collapse of a B-cell may be analagous to the removal of the keystone which supports an arch. Deprived of support, and lacking structural adaptations for cohesion (there are no desmosomes or interdigitations in the epithelium) and with the intercellular material digested, the remaining intact cells collapse into the lumen of the tubule. The lysis of individual cells of all types - R-, F-, and B-cells - may contribute to the tubules’ total complement of digestive enzymes.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Mohanna, S. Y. & Nott, J. A., 1986. B-cells and digestion in the hepatopancreas of Penaeus semisulcatus (Crustacea: Decapoda). Journal of the Marine Biological Association of the United Kingdom, 66, 403–114.CrossRefGoogle Scholar
Al-Mohanna, S. Y., Nott, J. A. & Lane, D. J. W., 1985 a. M-‘midget’ cells in the hepatopancreas of the shrimp Penaeus semisulcatus de Hann, 1844 (Crustacea, Decapoda). Crustaceana, 48, 260268.CrossRefGoogle Scholar
Al-Mohanna, S. Y., Nott, J. A. & Lane, D. J. W., 1985 b. Mitotic E- and secretory F-cells in the hepatopancreas of the shrimp Penaeus semisulcatus (Crustacea: Decapoda). Journal of the Marine Biological Association of the United Kingdom, 65, 901910.CrossRefGoogle Scholar
Arnaud, J., Brunet, M. & Mazza, J., 1980. Structure et ultrastructure comparées de l'intestin chez plusiers espèces de Copepodes Calanoïdes (Crustacea). Zoomorphologie, 95, 213233.CrossRefGoogle Scholar
Barker, P. L. & Gibson, R., 1977. Observations on the feeding mechanism, structure of the gut, and digestive physiology of the European lobster Homarus gammarus (L.) (Decapoda: Nephropidae). Journal of Experimental Marine Biology and Ecology, 26, 297324.CrossRefGoogle Scholar
Barker, P. L. & Gibson, R., 1978. Observations on the structure of the mouthparts, histology of the alimentary tract, and digestive physiology of the mud crab Scylla serrata (Forskål) (Decapoda: Portunidae). Journal of Experimental Marine Biology and Ecology, 32, 177196.CrossRefGoogle Scholar
Bennett, H. S., Wyrick, A. D., Lee, S. W. & Mcneil, J. H., 1976. Science and art in preparing tissues embedded in plastic with special reference to glycol methacrylate, glass knives, and simple stains. Stain Technology, 51, 7197.CrossRefGoogle ScholarPubMed
Caceci, T., 1984. A gravimetric formula for Erlandson's Maraglas, DER. 732 embedding medium. Texas Society for Electron Microscopy Journal, 15, 2627.Google Scholar
Cardell, R. R. Jr, Badenhausen, S. & Porter, K. R., 1967. Intestinal triglyceride absorption in the rat: an electron microscopy study. Journal of Cell Biology, 34, 123155.CrossRefGoogle Scholar
Couch, J. A., 1978. Disease, parasites, and toxic responses of commercial penaeid shrimps of the Gulf of Mexico and South Atlantic coasts of North America. Fishery Bulletin. National Oceanic and Atmospheric Administration of the United States, 76, 144.Google Scholar
Dall, W., 1967. The functional anatomy of the digestive tract of a shrimp, Metapenaeus bennettae Racek and Dall (Crustacea: Decapoda: Penaeidae). Australian Journal of Zoology, 15, 699714.CrossRefGoogle Scholar
Devillez, E. J. & Fyler, D. J., 1986. Isolation of hepatopancreatic cell types and enzymatic activities in the B-cells of the crayfish Orconectes rusticus. Canadian Journal of Zoology, 64, 8183.CrossRefGoogle Scholar
Friesen, J. A., Mann, K. H. & Willison, J. H., 1986. Gross anatomy and fine structure of the gut of the marine mysid shrimp My sis stenolepsis. Canadian Journal of Zoology, 64, 431441.CrossRefGoogle Scholar
Gibson, R. & Barker, P. L., 1979. The decapod hepatopancreas. Oceanography and Marine Biology, an Annual Review, 17, 285346.Google Scholar
Hirsch, G. C. & Jacobs, W., 1930. Die arbeitsrhythmus der mitteldarmdruse von Astacus leptodactylus, II. Teil: wachstum als primarer faktor des rhythmus eines polyphasischen organigen sekretionssystems. Zeitschrift für vergleichende Physiologie, 12, 524557.CrossRefGoogle Scholar
Hopkin, S. P. & Nott, J. A., 1980. Studies on the digestive cycle of the shore crab Carcinus maenas (L.) with special reference to the B cells in the hepatopancreas. Journal of the Marine Biological Association of the United Kingdom, 60, 891907.CrossRefGoogle Scholar
Hoppe-Seyler, F., 1876. Ueber unterschiede im chemischen bau und der verdauung hoherer und niederer thiere. Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere, 14, 395400.CrossRefGoogle Scholar
Huxley, T. H., 1880. The Crayfish. London: Regan Paul, Trench & Co.Google Scholar
Jacobs, W., 1928. Untersuchungen über die Cytologie der Sekretbildung in der mitteldarmdrüse von Astacus leptodactylus. Zeitschrift für Zellforschung und mikroskopische Anatomie, 8 (1), 62 pp.CrossRefGoogle Scholar
Lightner, D. V., Redman, R. M., Price, R. L. & Wiseman, M. D., 1982. Histopathology of aflatoxicosis in the marine shrimp Penaeus stylirostris and Penaeus vannamei. Journal of Invertebrate Pathology, 40, 279291.CrossRefGoogle Scholar
Loizzi, R. F., 1966. Cellular and Physiological Changes During Secretion in Crayfish Hepatopancreas. Ph.D. Dissertation, Iowa State University (Ames).Google Scholar
Loizzi, R. F., 1968. Fine structure of the crayfish hepatopancreas. Journal of Cell Biology, 39, 82a.Google Scholar
Loizzi, R. F., 1971. Interpretation of crayfish hepatopancreatic function based on fine structural analysis of epithelial cell lines and muscle network. Zeitschrift für Zellforschung und mikroskopische Anatomie, 113, 420440.CrossRefGoogle ScholarPubMed
Loizzi, R. F. & Peterson, D. R., 1969. Lipase localization in crayfish hepatopancreas. American Zoologist, 9, 583.Google Scholar
Loizzi, R. F. & Peterson, D. R., 1971. Lipolytic sites in crayfish hepatopancreas and correlation with fine structure. Comparative Biochemistry and Physiology, 39B, 227236.Google Scholar
McManus, J. F. A., 1946. Histological demonstration of mucin after periodic acid. Nature, London, 158, 202.CrossRefGoogle ScholarPubMed
McVicar, L. K. & Shivers, R. R., 1985. Gap junctions and intercellular communication in the hepatopancreas of the crayfish Orconectes propinquus during molt: a freeze-fracture electrophysiological study. Cell and Tissue Research, 240, 261–169.CrossRefGoogle Scholar
Miyawaki, M., Matsuzaki, M. & Sasaki, N., 1961. Histochemical studies on the hepatopancreas of the crayfish Procambarus clarkii. Kumamoto Journal of Science (B), 5, 161169.Google Scholar
Nott, J. A., Corner, E. D. S., Mavin, L. J. & O'hara, S. C. M., 1985. Cyclical contributions of the digestive epithelium to faecal pellet formation by the copepod Calanus helgolandicus. Marine Biology, 89, 271279.CrossRefGoogle Scholar
Rangneker, P. V. & Momin, M. A., 1974. Histochemical studies on the distribution and hormonal regulation of carbohydrates in the hepatopancreas of the crab Scylla serrata (Forskal). Zeitschrift für Mikroskopische-anatomische Forschung, 88, 871883.Google Scholar
Vogt, G., 1985. Histologie und cytologie der mitteldarmdruse von Penaeus monodon (Decapoda). Zoologischer Anzeiger, 215, 6180.Google Scholar
Vogt, G., Storch, V., Quinitio, E. T. & Pascual, F. P., 1985. Midgut gland as monitor organ for the nutritional value of diets in Penaeus monodon. Aquaculture, 48, 112.CrossRefGoogle Scholar