Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T15:34:39.129Z Has data issue: false hasContentIssue false

Temporal variation in the recruitment of calcareous sponges (Porifera, Calcarea) in Todos os Santos Bay, tropical Brazilian coast

Published online by Cambridge University Press:  24 November 2020

C. Chagas
Affiliation:
Laboratório de Biologia de Porifera, Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Campus Ondina, Salvador, Bahia40170-115, Brasil
F. Barros
Affiliation:
Laboratório de Ecologia Bentônica, Instituto de Biologia & CIENAM, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, Campus Ondina, Salvador, Bahia40170-115, Brasil Instituto Nacional de Ciência e Tecnologia em Estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução (IN-TREE), Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, Campus Ondina, Salvador, Bahia40170-115, Brasil
F. F. Cavalcanti*
Affiliation:
Laboratório de Biologia de Porifera, Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Campus Ondina, Salvador, Bahia40170-115, Brasil Instituto Nacional de Ciência e Tecnologia em Estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução (IN-TREE), Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, Campus Ondina, Salvador, Bahia40170-115, Brasil
*
Author for correspondence: F. F. Cavalcanti, E-mail: [email protected]; [email protected]

Abstract

Recruitment is related to the occupation of the substrate by fouling organisms. It plays an important role in the maintenance and distribution of benthic populations, being under the influence of biotic and abiotic factors. In the present work, the recruitment of calcareous sponges was monitored over two years in a marina at Todos os Santos Bay, a large bay in the tropical portion of the Brazilian coast. Artificial plates were immersed, being replaced bimonthly and the potential influence of the seawater temperature, photoperiod and precipitation on the number of sponge recruits was tested. The results showed that the number of calcareous sponge recruits had significant temporal variation. Nevertheless, different species showed different patterns over time. Significant differences were observed for Sycon avus, Sycon sp. and Leucandra serrata, and the periods with the highest number of recruits were different amongst them. Sycon bellum, Paraleucilla incomposita, Leucilla sp. and Heteropia glomerosa did not show significant variation in the number of recruits over time. None of the three tested environmental factors were correlated with the number of recruits, but results indicated S. avus recruitment might be driven by seawater temperature. Our results contribute to improve the current knowledge on the dynamics of each species found on the plates and reinforce the general view that the pattern of recruitment varies greatly in Calcarea, even amongst sympatric species.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adjeroud, M, Kayal, M and Penin, L (2016) Importance of recruitment processes in the dynamics and resilience of coral reef assemblages. In Rossi, S, Bramanti, L, Gori, A and Orejas Saco del Valle, C (eds), Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots. Cham: Springer, pp. 121.Google Scholar
Anderson, MJ and Underwood, AJ (1994) Effects of substratum on the recruitment and development of an intertidal estuarine fouling assemblage. Journal of Experimental Marine Biology and Ecology 184, 217236.CrossRefGoogle Scholar
Azevedo, F and Klautau, M (2007) Calcareous sponges (Porifera, Calcarea) from Ilha Grande Bay, Brazil, with descriptions of three new species. Zootaxa 1402, 122.CrossRefGoogle Scholar
Barros, FCR, Almeida, ACS, Cavalcanti, FF, Miranda, RJ, Nunes, JACC, Reis-Filho, J and Silva, EC (2018). Espécies marinhas exóticas e invasoras na Baía de Todos os Santos. In Hatje, V, Dantas, LMV and Andrade, JB (eds), Baía de Todos os Santos: avanços nos estudos de longo prazo. Salvador: EDUFBA, pp. 129154.Google Scholar
Bell, JJ (2008) The functional roles of marine sponges. Estuarine, Coastal and Shelf Science 79, 341353.CrossRefGoogle Scholar
Calazans, VPSB and Lanna, E (2019) Influence of endogenous and exogenous factors on the reproductive output of a cryptogenic calcareous sponge. Marine Biodiversity 49, 28372850.CrossRefGoogle Scholar
Cavalcanti, FF, Skinner, LF and Klautau, M (2013) Population dynamics of cryptogenic calcarean sponges (Porifera, Calcarea) in Southeastern Brazil. Marine Ecology 34, 280288.CrossRefGoogle Scholar
Cavalcanti, F, Menegola, C and Lanna, E (2014) Three new species of the genus Paraleucilla Dendy, 1892 (Porifera, Calcarea) from the coast of Bahia State, Northeastern Brazil. Zootaxa 3764, 537554.CrossRefGoogle ScholarPubMed
Chagas, C and Cavalcanti, FF (2017) Taxonomy of calcareous sponges (Porifera, Calcarea) sampled on artificial substrates of a recreational marina in the Tropical Northeastern Brazilian coast. Zootaxa 4363, 203224.CrossRefGoogle ScholarPubMed
Chase, AL, Dijkstra, JA and Harris, LG (2016) The influence of substrate material on ascidian larval settlement. Marine Pollution Bulletin 106, 3542.CrossRefGoogle ScholarPubMed
Dayton, P, Jarrell, S, Kim, S, Thrush, S, Hammerstrom, K, Slattery, M and Parnell, E (2016) Surprising episodic recruitment and growth of Antarctic sponges: implications for ecological resilience. Journal of Experimental Marine Biology and Ecology 482, 3855.CrossRefGoogle Scholar
Dayton, PK, Jarrel, SC, Kim, S, Parnell, PE, Trush, SF, Hammerstrom, K and Leichter, JJ (2019) Benthic responses to an Antarctic regime shift: food particle size and recruitment biology. Ecological Applications 29, e01823.CrossRefGoogle Scholar
Émond, K, Sainte-Marie, B, Galbraith, PS and Bêty, J (2015) Top-down vs. bottom-up drivers of recruitment in a key marine invertebrate: investigating early life stages of snow crab. ICES Journal of Marine Science: Journal du Conseil 72, 13361348.CrossRefGoogle Scholar
Fuentes-Santos, I, Labarta, U, Álvarez-Salgado, A and Fernândez-Reiriz, MJ (2016) Solar irradiance dictates settlement timing and intensity of marine mussels. Scientific Reports 12, 111.Google Scholar
Hatje, V and Andrade, JB (2009) Baía de Todos os Santos: aspectos oceanográficos, 2nd Edn. Salvador: EDUFBA.Google Scholar
Johnson, MF (1978) Recruitment, growth, mortality and seasonal variations in the calcareous sponges Clathrina coriacea (Montagu) and C. blanca (Miklucho-Maclay) from Santa Catalina Island, California. In Levi, C and Boury-Esnault, N (eds), Biologie des Spongiaires. Paris: Colloques Internationaux du C.N.R.S., pp. 325334.Google Scholar
Johnson, MF (1979) Habitats and habitat preferences of the calcareous sponges Clathrina coriacea (Montagu) and Clathrina blanca (Miklucho-Maclay) from Santa Catalina Island, California. Wasmann Journal of Biology 38, 19.Google Scholar
Klautau, M, Monteiro, L and Borojevic, R (2004) First occurrence of the genus Paraleucilla (Calcarea, Porifera) in the Atlantic Ocean: P. magna sp. nov. Zootaxa 710, 18.CrossRefGoogle Scholar
Klautau, M, Cóndor-Luján, B, Azevedo, F, Leocorny, P, Brandão, FR and Cavalcanti, FF (2020) Heteropia glomerosa (Bowerbank, 1873) (Porifera, Calcarea, Calcaronea), a new alien species in the Atlantic. Systematics and Biodiversity 18, 362376.CrossRefGoogle Scholar
Lanna, E, Paranhos, R, Paiva, PC and Klautau, M (2015) Environmental effects on the reproduction and fecundity of the introduced calcareous sponge Paraleucilla magna in Rio de Janeiro, Brazil. Marine Ecology 36, 10751087.CrossRefGoogle Scholar
Lanna, E, Cajado, B, Santos-da-Silva, C, Da Hora, J, Porto, U and Vasconcellos, V (2018) Is the Orton's rule still valid? Tropical sponge fecundity, rather than periodicity, is modulated by temperature and other proximal cues. Hydrobiologia 815, 187205.CrossRefGoogle Scholar
Lessa, GC, Cirano, M, Genz, F, Tanajura, CAS and Silva, RR (2009) Oceanografia física. In Hatje, V and Andrade, JBD (eds), Baía de Todos os Santos: aspectos oceanográficos. Salvador, BA: EDUFBA, pp. 69119.Google Scholar
Menge, BA, Gouhier, TC, Freidenburg, T and Lubchenco, J (2011) Linking long-term, large-scale climatic and environmental variability to patterns of marine invertebrate recruitment: toward explaining “unexplained” variation. Journal of Experimental Marine Biology and Ecology 400, 236249.CrossRefGoogle Scholar
Miklucho-Maclay, N (1868) Beiträge sur Kenntnis der Spongien. I. Über Guancha blanca einen neuen Kalkschwamm. Jenaische Zeitung 4, 221240.Google Scholar
Montagu, G (1814) An essay on sponges, with descriptions of all the species that have been discovered on the coast of Great Britain. Memoirs of the Wernerian Natural History Society 2, 67122.Google Scholar
Padua, A, Lanna, E, Zilberberg, C, Paiva, PC and Klautau, M (2013) Recruitment, habitat selection and larval photoresponse of Paraleucilla magna (Porifera, Calcarea) in Rio de Janeiro, Brazil. Marine Ecology 34, 5661.CrossRefGoogle Scholar
Pansini, M and Pronzato, R (1981) Étude des spongiaires de substrats artificiels immergés durant quatre ans. Vie et Milieu 31, 7782.Google Scholar
Pansini, M, Pronzato, R and Valsuani, G (1974) Popolamenti di substrati artificiali posti su un fondo corallino ed in una prateria de Posidonia. 3 Poriferi. Memorie di Biologia Marina e di Oceanografia 4, 263275.Google Scholar
Pierri, C, Longo, C and Giangrande, A (2010) Variability of fouling communities in the Mar Piccolo of Taranto (Northern Ionian Sea, Mediterranean Sea). Journal of the Marine Biological Association of the United Kingdom 90, 159167.CrossRefGoogle Scholar
Pineda, J, Reyns, NB and Starczak, VR (2009) Complexity and simplification in understanding recruitment in benthic populations. Population Ecology 51, 1732.CrossRefGoogle Scholar
Poléjaeff, N (1883) Report on the Calcarea dredged by H.M.S. ‘Challenger’, during the years 1873–1876. Report on the scientific results of the voyage of H.M.S. ‘Challenger’, 1873–1876. Zoology 8, 176.Google Scholar
Pronzato, R (1972) Poriferi del ‘fouling’ del Porto di Genova. Bollettino dei Musei e degli Istituti Biologici dell' Università di Genova 40, 8998.Google Scholar
Ribeiro, B, Padua, A, Paiva, PC, Custódio, MR and Klautau, M (2016) Exploitation of micro refuges and epibiosis: survival strategies of a calcareous sponge. Journal of the Marine Biological Association of the United Kingdom 98, 495503.CrossRefGoogle Scholar
Rico, A, Peralta, R and Gappa, J (2009) Recruitment variation in subtidal macrofouling assemblages of a Patagonian harbour (Argentina, south-western Atlantic). Journal of the Marine Biological Association of the United Kingdom 90, 437443.CrossRefGoogle Scholar
Ronowicz, M, Kukliński, P, Lock, K, Newman, PB, Burton, M and Jones, J (2014) Temporal and spatial variability of zoobenthos recruitment in a north-east Atlantic marine reserve. Journal of the Marine Biological Association of the United Kingdom 94, 13671376.CrossRefGoogle Scholar
Row, RWH (1909) Reports on the marine biology of the Sudanese Red Sea. XIII. Report on the sponges, collected by Mr. Cyril Crossland in 1904–5. Part I. Calcarea. Linnean Journal of Zoology 31, 182214.CrossRefGoogle Scholar
Schmidt, O (1862) Die spongien des Adriatischen meeres. Wilhelm Engelmann: Leipzig i–viii, 188.Google Scholar
Schmidt, O (1868) Die spongien der Küste von Algier. Mit nachträgen zu den spongien des Adriatischen meeres (Drittes Supplement). Wilhelm Engelmann: Leipzig i–iv, 144.Google Scholar
Sokołowski, A, Ziółkowska, M, Balazy, P, Plichta, I, Kukliński, P and Mudrak-Cegiołka, S (2017) Recruitment pattern of benthic fauna on artificial substrates in brackish low-diversity system (the Baltic Sea). Hydrobiologia 784, 125141.CrossRefGoogle Scholar
Sotelo-Casas, RC, Cupul-Magana, AL, Solís-Marín, FA and Rodríguez-Troncoso, T (2016) Recruitment patterns of 2 sea cucumber species in a Central Mexican Pacific coral reef community. Revista Mexicana de Biodiversidad 87, 8691.CrossRefGoogle Scholar
South, PM (2016) An experimental assessment of measures of mussel settlement: effects of temporal, procedural and spatial variations. Journal of Experimental Marine Biology and Ecology 482, 6474.CrossRefGoogle Scholar
Stubler, AD, Robertson, H, Styron, HJ, Carrol, JM and Finelli, CM (2017) Reproductive and recruitment dynamics of clionaid sponges on oyster reefs in North Carolina. Invertebrate Biology 136, 365378.CrossRefGoogle Scholar
Underwood, AJ and Fairweather, PG (1989) Supply-side ecology and benthic marine assemblage. TREE 4, 1620.Google Scholar
Vacelet, J (1980) L'installation des spongiaires sur les substrats nouvellement immergés. Memorie di Biologia Marina e di Oceanografia 10, 95111.Google Scholar
Vacelet, J (1981) Étude qualitative et quantitative des salissures biologiques de plaques epérimentales immergées en pleine eau. 6 –Les éponges. Tethys 10, 165172.Google Scholar
Whalan, S, Ettinger-Epstein, P and Nys, R (2008) The effect of temperature on larval pre-settlement duration and metamorphosis for the sponge Rhopaloeides odorabile. Coral Reefs 27, 783786.CrossRefGoogle Scholar
Wulff, J (2013) Recovery of sponges after extreme mortality events: morphological and taxonomic patterns in regeneration versus recruitment. Integrative and Comparative Biology 53, 512523.CrossRefGoogle ScholarPubMed
Zea, S (1993) Recruitment of demosponges (Porifera, Demospongiae) in rocky and coral reef habitats of Santa Marta, Colombian Caribbean. Marine Ecology 14, 121.CrossRefGoogle Scholar