Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T16:26:30.409Z Has data issue: false hasContentIssue false

The spatial pattern of Cyprideis torosa (Jones, 1850)(Crustacea: Ostracoda)

Published online by Cambridge University Press:  11 May 2009

Carlo Heip
Affiliation:
Department of Zoology, State University of Ghent, Ghent, Belgium

Abstract

The spatial pattern of the ostracod Cyprideis torosa (Jones, 1850) is aggregated and can be described by the negative binomial distribution. The fit of the observed distribution to the negative binomial is less well for the total number of females because females that are not carrying eggs tend to be independently distributed from both females carrying eggs and males. The aggregations are roughly circular with a radius of about 13 cm and may be themselves aggregated. A method to picture the aggregations is described.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arlt, G., 1973. Vertical and horizontal microdistribution of the meiofauna in the Greifswalder Bodden. Oikos, supplement 15, 105–11.Google Scholar
Barnett, P. R. O., 1968. Distribution and ecology of harpacticoid copepods of an intertidal mud-flat. Internationale Revue der gesamten Hydrobiologie u Hydrographie, 53, 177209.CrossRefGoogle Scholar
Bliss, C. J. & Fisher, R. A., 1953. Fitting the negative binomial distribution to biological data. Biometrics, 9, 176200.CrossRefGoogle Scholar
Buzas, M. A., 1968. On the spatial distribution of Foraminifera. Contributions from the Cushman Foundation for Foraminiferal Research, 19, 111.Google Scholar
Cassie, R. M., 1963. Microdistribution of plankton. Oceanography and Marine Biology, an Annual Review, 1, 223–52.Google Scholar
Elliott, J. M., 1971. Some methods for the statistical analysis of samples of benthic invertebrates. Scientific Publications. Freshwater Biological Association, 25, 1144.Google Scholar
Elofson, O., 1941. Zur Kenntnis der marinen Ostracoden Schwedens mit besonderer Berücksichtigung des Skagerraks. Zoologiska bidrag från Uppsala, 19, 215534.Google Scholar
Gray, J. S. & Rieger, R. M., 1971. A quantitative study of the meiofauna of an exposed sandy beach, at Robin Hood's Bay, Yorkshire. Journal of the Marine Biological Association of the United Kingdom, 51, 119.CrossRefGoogle Scholar
Heip, C., 1973. Een populatie-dynamische studie over de benthale Ostracoda en Copepoda van een brakwaterhabitat. Ph.D. Thesis, State University of Ghent. (In Dutch.)Google Scholar
Heip, C., 1975. On the significance of aggregation in some benthic marine invertebrates. In Proceedings of the gth European marine biology symposium, ed. H., Barnes, 527–38. Aberdeen University Press.Google Scholar
Hoel, P. G., 1943. On indices of dispersion. Annals of Mathematical Statistics 14, 155–62.CrossRefGoogle Scholar
Holme, N. A., 1950. Population dispersion in Tellina tenuis da Costa. Journal of the Marine Biological Association of the United Kingdom, 29, 267–80.CrossRefGoogle Scholar
Iyer, Krishna P. V., 1949. The first and seconds moments of some probability distributions arising from points on a lattice and their application. Biometrika, 36, 135–41.CrossRefGoogle ScholarPubMed
Jumars, P. A., 1975. Methods for measurement of community structure in deep-sea macrobenthos. Marine Biology, 30, 245–52.CrossRefGoogle Scholar
Katona, S. K., 1973. Evidence for sex pheromones in planktonic copepods. Limnology and Oceanography, 18, 574–83.CrossRefGoogle Scholar
Levinton, J., 1972. Spatial distribution of Nucula proxima Say (Protobranchia): an experimental approach. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 143, 175–83.CrossRefGoogle Scholar
Olsson, I. & Eriksson, B., 1974. Horizontal distribution of meiofauna within a small area, with special reference to foraminifera. Zoon, 2, 6784.Google Scholar
Pielou, E. C., 1969. An introduction to mathematical ecology. 286 pp. New York: John Wiley.Google Scholar
Redeke, H. C., 1936. Ostracoda. In Flora en Fauna der Zuiderzee. Supplement.Google Scholar
Stavn, R. H., 1971. The horizontal-vertical distribution hypothesis: Langmuir-circulations and Daphnia-distributions. Limnology and Oceanography, 16, 453–66.CrossRefGoogle Scholar
Theisen, B. F., 1966. The life history of seven species of Ostracods from a Danish brackish water locality. Meddelelser fra Danmarks Fiskeri -og Havundersogelser, 4, 215–70.Google Scholar
Vitiello, P., 1968. Variations de la densité du microbenthos sur une aire restreinte. Recueil des travaux de la Station marine d'Endoume, Faculté des sciences de Marseille, 41, 261–70.Google Scholar
Wiebe, P. H., 1970. Small-scale spatial distribution in oceanic zooplankton. Limnology and Oceanography, 15, 205–17.CrossRefGoogle Scholar