Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T02:38:57.104Z Has data issue: false hasContentIssue false

Spatial and temporal changes in biomass, production and assemblage structure of mesozooplanktonic copepods in the tropical south-west Atlantic Ocean

Published online by Cambridge University Press:  15 December 2014

C.O. Dias*
Affiliation:
Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Laboratório Integrado de Zooplâncton e Ictioplâncton, Prédio do CCS, Bloco A, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21.941-590, Brazil
A.V. Araujo
Affiliation:
Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Laboratório Integrado de Zooplâncton e Ictioplâncton, Prédio do CCS, Bloco A, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21.941-590, Brazil
S.C. Vianna
Affiliation:
Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Laboratório Integrado de Zooplâncton e Ictioplâncton, Prédio do CCS, Bloco A, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21.941-590, Brazil
L.F. Loureiro Fernandes
Affiliation:
Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia, Vitória, Espírito Santo 29075-910, Brazil
R. Paranhos
Affiliation:
Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Biologia Marinha, Laboratório de Hidrobiologia, Prédio do CCS, Bloco A, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21.941-590, Brazil
M.S. Suzuki
Affiliation:
Universidade Estadual do Norte Fluminense Darcy Ribeiro, Centro de Biociências e Biotecnologia, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
S.L.C. Bonecker
Affiliation:
Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Laboratório Integrado de Zooplâncton e Ictioplâncton, Prédio do CCS, Bloco A, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21.941-590, Brazil
*
Correspondence should be addressed to: C.O. Dias, Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Laboratório Integrado de Zooplâncton e Ictioplâncton, Prédio do CCS, Bloco A, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21.941-590, Brazil email: [email protected]

Abstract

We examined the spatial and temporal variations of coastal and oceanic epipelagic copepods (rainy–dry seasons of 2009) in a tropical area of the south-west Atlantic. Zooplankton samples were obtained at 48 stations along six transects perpendicular to the coast, in the subsurface water between the 25 and 3000 m isobaths, by horizontal hauls using a Multinet. Abundance (42–64,753 ind. m−3), biomass (0.08–113 mg C m−3) and daily copepod production (0.17–163.20 mg C m−3 d−1) showed longitudinal and latitudinal variability. The highest values were observed over the southern continental shelf during the dry season. Temoridae, Undinula vulgaris and Paracalanus quasimodo dominated the biomass and daily copepod production during the rainy season; while Calanoides carinatus, Calanopia americana, Clausocalanidae, Temoridae, Paracalanidae and Subeucalanidae dominated during the dry season. The copepod assemblages formed four different groups: rainy season–continental shelf (1), dry season–continental shelf (2), rainy season–continental slope (3) and dry season–continental slope (4). Temperature, salinity, chlorophyll-a and suspended particulate matter explained 45% of the productivity distribution of the dominant copepod species. This study is the first attempt to examine the biomass and daily copepod production in oceanic waters in the south-west Atlantic Ocean, and it showed that copepod biomass and production in a tropical region can be relatively high compared with other regions of the world's oceans.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ara, K. (2001a) Temporal variability and production of the planktonic copepods in the Cananéia Lagoon estuarine system, São Paulo, Brazil. II. Acartia lilljeborgi. Plankton Biology and Ecology 48, 3545.Google Scholar
Ara, K. (2001b) Temporal variability and production of Euterpina acutifrons (Copepoda: Harpacticoida) in the Cananéia Lagoon estuarine system, São Paulo, Brazil. Hydrobiologia 453/454, 177187.Google Scholar
Ara, K. (2002) Temporal variability and production of Temora turbinata (Copepoda: Calanoida) in the Cananéia Lagoon estuarine system, São Paulo, Brazil. Scientia Marina 66, 399406.Google Scholar
Ara, K. (2004) Temporal variability and production of the planktonic copepod community in the Cananéia Lagoon estuarine system, São Paulo, Brazil. Zoological Studies 43, 179186.Google Scholar
Ara, K. and Hiromi, J. (2007) Temporal variability in primary and copepod production in Sagami Bay, Japan. Journal of Plankton Research 29, 8596.CrossRefGoogle Scholar
Araujo, H.M.P. (2006) Distribution of Paracalanidae species (Copepoda, Crustacea) in the continental shelf off Sergipe and Alagoas states, Northeast Brazil. Brazilian Journal of Oceanography 54, 173181.CrossRefGoogle Scholar
Avila, T.R., Machado, A.A.S. and Bianchini, A. (2012) Estimation of zooplankton secondary production in estuarine waters: comparison between the enzymatic (chitobiase) method and mathematical models using crustaceans. Journal of Experimental Marine Biology and Ecology 416–417, 144152.Google Scholar
Avila, T.R., Pedrozo, C.S. and Bersano, J.G.F. (2009) Variação temporal do zooplâncton da Praia de Tramandaí, Rio Grande do Sul, com ênfase em Copepoda. Iheringia 99, 1826.CrossRefGoogle Scholar
Bamstedt, U. (1986) Chemical composition and energy content. In Corner, E.D.S. and O'Hara, S.C.M. (eds) The Biological Chemistry of Marine Copepods. Oxford: Clarendon Press, pp. 158.Google Scholar
Barbiére, E.B. (1975) Ritmo climático e extração do sal em Cabo Frio. Revista Brasileira de Geografia 37, 23109.Google Scholar
Bauer, R.T. (1989) Continuous reproduction and episodic recruitment in nine shrimp species inhabiting a tropical seagrass meadow. Journal of Experimental Marine Biology and Ecology 127, 175187.Google Scholar
Bradford-Grieve, J.M., Markhaseva, E.I., Rocha, C.E.F. and Abiahy, B. (1999) Copepoda. In Boltovskoy, D. (ed.) South Atlantic zooplankton. Leiden: Backhuys Publishers, pp. 8691098.Google Scholar
Campaner, A.F. (1985) Occurrence and distribution of copepods (Crustacea) in the epipelagial off southern Brazil. Boletim do Instituto Oceanográfico 33, 527.Google Scholar
Campaner, A.F. and Honda, S. (1987) Distribution and co-occurrence of Calanoides carinatus and larvae of Sardinella brasiliensis and Engraulis anchoita over the southern Brazilian continental shelf. Boletim do Instituto Oceanográfico 35, 716.Google Scholar
Cavalcanti, E.A.H. and de Larrazábal, M.E.L. (2004) Macrozooplâncton da zona econômica exclusiva do nordeste do Brasil (segunda expedição oceanográfica - REVIZEE/NE II) com ênfase em Copepoda (Crustacea). Revista Brasileira de Zoologia 21, 467475.Google Scholar
Chisholm, L.A. and Roff, J.C. (1990 a) Abundances, growth rates, and production of tropical neritic copepods off Kingston, Jamaica. Marine Biology 106, 7989.CrossRefGoogle Scholar
Chisholm, L.A. and Roff, J.C. (1990 b) Size-weight relationships of tropical copepods off Kingston, Jamaica. Marine Biology 106, 7177.Google Scholar
Dias, C.O. (1994) Distribuição e variação espaço-temporal dos copépodes na Baía do Espírito Santo (Vitória - E.S. - Brasil). Brazilian Archives of Biology and Technology 37, 929949.Google Scholar
Dias, C.O. (1996) Copépodes da costa leste do Brasil. Brazilian Archives of Biology and Technology 39, 113122.Google Scholar
Dias, C.O. and Araujo, A.V. (2006) Copepoda. In Bonecker, S.L.C. (ed.) Atlas do zooplâncton da região central da Zona Econômica Exclusiva. Série Livros/Documentos REVIZEE Score Central, Vol. 21. Rio de Janeiro: Museu Nacional, pp. 2199.Google Scholar
Dias, C.O., Araujo, A.V., Paranhos, R. and Bonecker, S.L.C. (2010) Vertical copepod assemblages (0–2300 m) off southern Brazil. Zoological Studies 49, 230242.Google Scholar
Gusmão, L.M.O., Neumann-Leitão, S., Nascimento-Vieira, D.A., Silva, T.A., Ilva, A.P.S., Porto-Neto, F.F. and Moura, M.C.O. (1997) Zooplâncton oceânico entre os Estados do Ceará e Pernambuco, Brasil. Trabalhos do Instituto de Oceanografia da Universidade Federal de Pernambuco 25, 1730.Google Scholar
Hirst, A.G. and Sheader, M. (1997) Are in situ weight-specific growth rates body size independent in marine planktonic copepods? A re-analysis of the global syntheses and a new empirical model. Marine Ecology Progress Series 154, 155165.Google Scholar
Hopcroft, R.R., Roff, J.C. and Chavez, F.P. (2001) Size paradigms in copepod communities: a re-examination. Hydrobiologia 453-454, 133141.Google Scholar
Hopcroft, R.R., Roff, J.C., Webber, M.K. and Witt, J.D.S. (1998) Zooplankton growth rates: the influence of size and resources in tropical marine copepodites. Marine Biology 132, 6777.Google Scholar
James, M.R. and Wilkinson, V.H. (1988) Biomass, carbon ingestion, and ammonia excretion by zooplankton associated with an upwelling plume in western Cook Strait, New Zealand. New Zealand Journal of Marine and Freshwater Research 22, 249257.Google Scholar
Joh, H. and Uno, S. (1983) Zooplankton standing stock and their estimated production in Osaka Bay. Bulletin of Plankton Society of Japan 30, 4151 (in Japanese with English abstract).Google Scholar
Kiørboe, T. and Nielsen, T.G. (1994) Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 1. Copepods. Limnology and Oceanography 39, 493507.Google Scholar
Koga, F. (1986) The occurrence and production of zooplankton in Suo-nada, western Seto Inland Sea. Bulletin of Nansei Regional Fisheries Research Laboratory 20, 91113 (in Japanese with English abstract).Google Scholar
Leandro, S.M., Morgado, F., Pereira, F. and Queiroga, H. (2007) Temporal changes of abundance, biomass and production of copepod community in a shallow temperate estuary (Ria de Aveiro, Portugal). Estuarine, Coastal and Shelf Science 74, 215222.Google Scholar
Lopes, R.M., Brandini, F.P. and Gaeta, S.A. (1999) Distribution patterns of epipelagic copepods off Rio de Janeiro (SE Brazil) in summer 1991/1992 and winter 1992. Hydrobiologia 411, 161174.Google Scholar
Lopes, R.M., Dam, H.G., Aquino, N., Monteiro-Ribas, W. and Rull, L. (2007) Massive egg production by a salp symbiont, the poecilostomatoid copepod Sapphirina angusta Dana, 1849. Journal of Experimental Marine Biology and Ecology 348, 145153.Google Scholar
Lopes, R.M., Katsuragawa, M., Dias, J.F., Montú, M.A., Muelbert, J.H., Gorri, C. and Brandini, F.P. (2006) Zooplankton and ichthyoplankton distribution on the southern Brazilian shelf: an overview. Scientia Marina 70, 189202.Google Scholar
McEwen, G.F., Johnson, M.W. and Folsom, T.R. (1957) A statistical analysis of the performance of the Folsom plankton sample splitter, based upon test observations. Archives for Meteorology, Geophysics, Biochemistry and Bioclimatology 7, 502527.Google Scholar
de Melo, M. Jr (2009) Produção secundária e aspectos reprodutivos de copépodes pelágicos ao largo de Ubatuba (S.P. – Brasil). PhD thesis. Universidade de São Paulo, São Paulo, Brazil.Google Scholar
Miyashita, L.K., Melo Júnior, M. and Lopes, R.M. (2009) Estuarine and oceanic influences on copepod abundance and production of a subtropical coastal area. Journal of Plankton Research 31, 815826.Google Scholar
Neumann-Leitão, S. (2010) O zooplâncton como indicador da qualidade ambiental de dois estuários do Brasil tropical. PhD thesis. Universidade Federal de Pernambuco, Recife, Brazil.Google Scholar
Neumann-Leitão, S., Eskinazi Sant'anna, E.M., Gusmão, L.M.O., Nascimento-Vieira, D.A., Paranaguá, M.N. and Schwamborn, R. (2008) Diversity and distribution of the mesozooplankton in the tropical southwestern Atlantic. Journal of Plankton Research 30, 795805.Google Scholar
Neumann-Leitão, S., Gusmão, L.M.O., Silva, T. A., Nascimento-Vieira, D.A. and Silva, A. P. (1999) Mesozooplankton biomass and diversity in coastal and oceanic waters off north-eastern Brazil. Archive of Fishery and Marine Research 47, 153165.Google Scholar
Nishibe, Y. and Ikeda, T. (2008) Metabolism and elemental composition of four oncaeid copepods in the western subarctic Pacific. Marine Biology 153, 397404.CrossRefGoogle Scholar
Paffenhöfer, G.A. and Mazzocchi, M.G. (2003) Vertical distribution of subtropical epiplanktonic copepods. Journal of Plankton Research 25, 11391156.Google Scholar
Parsons, T.R., Maita, Y. and Lalli, C.M. (1984) A manual of chemical and biological methods for seawater analysis. Oxford: Pergamon Press.Google Scholar
Raymont, J.E.G. (1983) Plankton and productivity in the ocean. Vol. 2. Zooplankton. Oxford: Pergamon Press.Google Scholar
Rigler, F.H. and Downing, J.A. (1984) A manual on methods for the assessment of secondary productivity in fresh waters. London: Blackwell Scientific.Google Scholar
Sommer, U. and Stibor, H. (2002) Copepoda–Cladocera–Tunicata: the role of three major mesozooplankton groups in pelagic food webs. Ecological Research 17, 161174.Google Scholar
Souza, T.A., Godoy, J.M., Godoy, M.L.D.P., Moreira, I., Carvalho, Z.L., Salomão, M.S.M.B. and Rezende, C.E. (2010) Use of multitracers for the study of water mixing in the Paraíba do Sul River estuary. Journal of Environmental Radioactivity 101, 564570.Google Scholar
Stramma, L., Ikeda, Y. and Peterson, R.G. (1990) Geostrophic transport in the Brazil Current region north of 20°S. Deep-Sea Research 37, 18751886.Google Scholar
Turner, J.T. (2004) The importance of small planktonic copepods and their roles in pelagic marine food webs. Zoological Studies 43, 255266.Google Scholar
Uye, S., Aoto, I. and Onbé, T. (2002) Seasonal population dynamics and production of Microsetella norvegica, a widely distributed but little studied marine planktonic harpacticoid copepod. Journal of Plankton Research 24, 143153.Google Scholar
Uye, S., Kuwata, H. and Endo, T. (1987) Standing stocks and production rates of phytoplankton and planktonic copepods in the Inland Sea of Japan. Journal of the Oceanographical Society of Japan 42, 421434.Google Scholar
Uye, S. and Liang, D. (1998) Copepods attain high abundance, biomass and production in the absence of large predators but suffer cannibalistic loss. Journal of Marine Systems 15, 495501.Google Scholar
Valentin, J.L. (1984) Analyse des paramètres hydrobiologiques dans la remontée de Cabo Frio (Brésil). Marine Biology 82, 259276.CrossRefGoogle Scholar
Valentin, J.L. and Monteiro-Ribas, M.A. (1993) Zooplankton community structure on the east-southeast Brazilian continental shelf (18–23°S latitude). Continental Shelf Research 13, 407424.Google Scholar
Valentin, J.L., Monteiro-Ribas, M.A. and Mureb, E. (1987) Sur quelques zooplanctontes abondants dans l'upwelling de Cabo Frio (Brésil). Journal of Plankton Research 9, 11951226.Google Scholar
Vega-Pérez, L.A. and Hernandez, S. (1997) Composição e distribuição da Família Paracalanidae (Copepoda: Calanoida) ao largo de São Sebastião, Estado de São Paulo-Brasil, com ênfase em três espécies de Paracalanus. Revista Brasileira de Oceanografia 45, 6175.CrossRefGoogle Scholar
Viana, A.R., Faugères, J.C., Kowsmann, R.O., Lima, J.A.M., Caddah, L.F.G. and Rizzo, J.G. (1998) Hydrology, morphology and sedimentology of the Campos continental margin, offshore Brazil. Sedimentary Geology 115, 133157.Google Scholar
Webber, M.K. and Roff, J.C. (1995) Annual biomass and production of the oceanic copepod community off Discovery Bay, Jamaica. Marine Biology 123, 481495.Google Scholar