Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-23T21:04:49.008Z Has data issue: false hasContentIssue false

Some Observations on the Tolerance of Oceanic Plankton to High Hydrostatic Pressure

Published online by Cambridge University Press:  11 May 2009

A. G. Macdonald
Affiliation:
Department of Physiology, University of Aberdeen, U.K.
I. Gilchrist
Affiliation:
Department of Mechanical Engineering, QueensUniversity, Belfast, U.K.
J. M. Teal
Affiliation:
Woods Hole Oceanographic Institution, U.S.A.

Extract

The activity of the following planktonic animals has been observed at hydrostatic pressures up to 500 atm: Gigantocypris mülleri, Conchoecia hyalophyllum, C. macrocheira, C. rhynchena, Parathemisto sp., Megacalanus longicornis, Euaugaptilus magna, Pareuchaeta gracilis, Pleuromamma robusta, Anomalocera patersoni, Euphausia krohni, Acanthephyra pelagica and Amalopeus elegans. Respiration of Gigantocypris and Systellaspis debilis was also measured at pressure.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Angel, M. V. 1969. Planktonic Ostracods from the Canary Islands region; their depth distribution, diurnal migrations and community organization. J. mar. biol. Ass. U.K., Vol. 49, pp. 515–53.Google Scholar
Cooper, L. H. N. 1967. Stratification in the deep ocean. Sci. Prog. Lond., Vol. 55, pp. 7790.Google Scholar
Ebbecke, U. 1935. Über die Wirkung hoher Drucke auf marine Lebewesen. Pflügers Arch. ges. Physioh., Bd. 236, pp. 648–57.Google Scholar
Foxton, P. 1970. The vertical distribution of pelagic decapods (Crustacea: Natantia) collected on the Sond cruise 1965.J.mar. biol. Ass. U.K., Vol. 50, pp. 939–60.Google Scholar
Grice, G. D. & Hulsemann, K. 1965. Abundance, vertical distribution and taxonomy of calanoid copepods at selected stations in the North East Atlantic.J.Zool., Vol. 146, pp. 213–62.Google Scholar
Hochachka, P. W. 1972. Symp. Soc. exp. Biol., Vol. 26 (in press).Google Scholar
Johnson, F. H.Eyring, H. & Polissar, M. J. 1954. The Kinetic Basis of Molecular Biology, 874 pp. New York: Wiley.Google Scholar
Johnson, F. H. & Flagler, E. A. 1951. Activity of narcotized amphibian larvae under hydrostatic pressure. J. cell and comp. Physiol., Vol. 37, pp. 1525.Google Scholar
Macdonald, A. G. 1972. Symp. Soc. exp. Biol., Vol. 26 (in press).Google Scholar
Mauchline, J. & Fisher, L. R. 1969. The biology of euphausiids. Adv. in mar. Biol., Vol. 7, pp. 1454.Google Scholar
Morita, R. J. 1967. Effects of hydrostatic pressure on marine microorganisms. Oceanogr. mar. Biol., Vol. 5, pp. 187203.Google Scholar
Poulsen, E. K. 1962. Ostracoda-Myodocopa. I. Cypridiniformes-Cypridinidae. Dana Rep., no. 56, pp. 1414.Google Scholar
Sars, G. O. 1924/1925. Result. Camp, scient. Prince Albert I, Vol. 69, 408 pp.Google Scholar
Schlieper, C. 1968. High pressure effects on marine invertebrates and fishes. Mar. Biol., Vol. 2, pp. 512.Google Scholar
Schlieper, C. 1972. Symp. Soc. exp. Biol., Vol. 26 (in press).Google Scholar
Spyropoulos, C. S. 1957. The effects of hydrostatic pressure upon the text-abstractl and narcotized nerve fiber. J. gen. Physiol., Vol. 40, pp. 849–57.Google Scholar
Sverdrup, H. U.Johnson, M. W. & Fleming, R. H. 1942. The Oceans: Their Physics, Chemistry and General Biology, 1087 pp. Englewood Cliffs, N.J.: Prentice-Hall.Google Scholar
Teal, J. M. & Carey, F. G. 1967. Effects of pressure and temperature on the respiration of euphausiids. Deep-Sea Res., Vol. 14, pp. 725–33.Google Scholar
Zimmerman, A. M. (ed), 1970. High Pressure Effects on Cellular Processes, 324 pp. Academic Press, Inc.Google Scholar
Zobell, C. E. 1972. Symp. Soc. exp. Biol., Vol. 26 (in press).Google Scholar