Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T15:30:20.394Z Has data issue: false hasContentIssue false

Sipunculans associated with dead coral skeletons in the Santa Marta region of Colombia, south-western Caribbean

Published online by Cambridge University Press:  24 April 2013

Carlos E. Gómez*
Affiliation:
Programa de Biología Marina, Facultad de Ciencias Naturales e Ingeniería, Universidad Jorge Tadeo Lozano.Cr. 2 14–23, Edificio Mundo Marino, Santa Marta, Colombia
Néstor E. Ardila
Affiliation:
Programa de Biología, Departamento de Ciencias Básicas, Universidad de la Salle.Cr. 2 10–70, Sede La Candelaria, Bogotá, Colombia
Adolfo Sanjuan-Muñoz
Affiliation:
Programa de Biología Marina, Facultad de Ciencias Naturales e Ingeniería, Universidad Jorge Tadeo Lozano.Cr. 2 14–23, Edificio Mundo Marino, Santa Marta, Colombia
*
Correspondence should be addresed to: C. E. Gómez, Programa de Biología Marina, Facultad de Ciencias Naturales e Ingeniería, Universidad Jorge Tadeo Lozano. Cr. 2 14–23, Edificio Mundo Marino, Santa Marta, Colombia email: [email protected]

Abstract

Sipunculans represent a discrete component of the coral reef ecosystem, since they live inside the calcareous structure. They are an important component in terms of biomass and number of organisms. The present study describes the diversity of sipunculans living inside massive coral skeletons. A total of 43 blocks of dead coral skeletons from Montastraea cavernosa, Montastraea annularis and Diploria strigosa were collected from nearby coral reef areas off Santa Marta, on the Colombian Caribbean coast. Using hammer and chisel, blocks of approximately 1 dm3 were broken into small pieces, from which the sipunculans were extracted. A total of 381 organisms were obtained from the coral blocks comprising four families and 10 species. All the species found have been widely reported in different studies from the Caribbean region. Aspidosiphon fischeri and Phascolosoma perlucens were the two most abundant species comprising more than 60% of the total organisms with a mean density of 18.52 ± 4.64 organisms dm3. Dead coral substrate from M. cavernosa had the greatest abundance (N = 148), followed by D. strigosa (N = 121) and M. annularis (N = 112). There were no significant differences in the abundance, richness, and diversity of sipunculans between coral skeletons; and within samples there was high variability suggesting that the skeletal substrates analysed came from coral skeletons of different unknown ages of succession. These results describe the sipunculan community structure that live inside three important massive coral skeletons, and contributes to the knowledge of the cryptobiota diversity of the Santa Marta area of Colombia.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arévalo-Martínez, D.L. and Franco-Herrera, A. (2008) Características oceanográficas de la surgencia frente a la ensenada de Gaira, Departamento de Magdalena, época seca menor de 2006. Boletín Investigaciones Marinas y Costeras 37, 131162.Google Scholar
Cantera, J., Orozco, C., Londoño-cruz, E. and Toro-Farmer, G. (2003) Abundance and distribution patterns of infaunal associates and macroborers of the branched coral (Pocillopora damicornis) in Gorgona Island (Eastern Tropical Pacific). Bulletin of Marine Sciences 72, 207219.Google Scholar
Clarke, K. and Warwick, P. (2001) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth: Plymouth Marine Laboratory.Google Scholar
Collin, R., Díaz, M.C., Norenburg, J., Rocha, R.M., Sánchez, J.A., Schulze, A., Schwartz, M. and Váldes, A. (2005) Photographic identification guide to some common marine invertebrates of Bocas del Toro, Panama. Caribbean Journal of Sciences 41, 638707.Google Scholar
Cutler, E.B. (1994) The Sipuncula: their systematics, biology, and evolution. Ithaca, NY: Cornell University.Google Scholar
Davies, P.J. and Hutchings, P.A. (1983) Initial colonization, erosion and accretion on coral substrate. Coral Reefs 2, 2735.CrossRefGoogle Scholar
Díaz, J.M., Escobar, L.A. and Velásquez, L.E. (1990) Reef associated molluscan fauna of the Santa Marta area, Caribbean coast of Colombia. Boletín Investigaciones Marinas y Costeras 19–20, 173196.Google Scholar
Fonseca, A.C., Dean, H.K. and Cortés, J. (2006) Non-colonial coral macro-borers as indicators of coral reef status in the south Pacific of Costa Rica. Revista de Biología Tropical 54, 101115.CrossRefGoogle ScholarPubMed
Franco, A. (2005) Oceanografía de la ensenada de Gaira: El Rodadero, más que un centro turístico en el Caribe colombiano. Universidad Jorge Tadeo Lozano, Bogotá.Google Scholar
Glynn, P.W. (1997) Bioerosion and coral reef growth: a dynamic balance. In Birkeland, C. (ed.) Life and death of coral reefs. London: Chapman & Hall, pp. 6894.CrossRefGoogle Scholar
Highsmith, R.C. (1981a) Coral bioerosion: damage relative to skeletal density. American Naturalist 117, 193198.CrossRefGoogle Scholar
Highsmith, R.C. (1981b) Coral bioerosion at Enewetak: agents and dynamics. Internationale Revue der gesamten Hidrobiologie und Hydrographie 66, 335375.CrossRefGoogle Scholar
Hutchings, P. (1974) A preliminary report on the density and distribution of invertebrates living on coral reefs. In Cameron, A.M., Cambell, B.M., Cribb, A.B., Endean, R., Jell, J.S., Jones, O.A., Mather, P. and Talbot, F.H. (eds) Proceedings of the Second International Coral Reef Symposium, Brisbane, Volume 1, pp. 285296.Google Scholar
Hutchings, P. (1981) Polychaete recruitment onto dead coral substrates at Lizard Island, Great Barrier Reef, Australia. Bulletin of Marine Sciences 31, 410423.Google Scholar
Hutchings, P. (1986) Biological destruction of coral reefs: a review. Coral Reefs 4, 239252.CrossRefGoogle Scholar
Hutchings, P. and Peyrot-Clausade, M. (1988) Macro-infaunal boring communities of Porites: a biogeographical comparison. In Choat, J.H., Barnes, D., Borowitzka, M.A., Joll, J.C., Davies, P.J., Flood, P., Hatcher, B.G., Hopley, D., Hutchings, P.A., Kinsey, D., Orme, G.R., Pichon, M., Sale, P.F., Sammarco, P., Wallace, C.C., Wilkinson, C., Wolanski, E. and Bellwood, O. (eds) Proceedings of the 6th International Coral Reef Symposium, Townsville, Australia, Volume 3, pp. 263267.Google Scholar
Hutchings, P. and Peyrot-Clausade, M. (2002) The distribution and abundance of boring species of polychaetes and sipunculans in coral substrates in French Polynesia. Journal of Experimental Marine Biology and Ecology 269, 101121.CrossRefGoogle Scholar
Hutchings, P., Kiene, W.E., Cunningham, R.B. and Donnelly, C. (1992) Spatial and temporal patterns of non-colonial boring organisms (polychaetes, sipunculans and bivalve molluscs) in Porites at Lizard Island, Great Barrier Reef. Coral Reefs 11, 2331.CrossRefGoogle Scholar
Kawauchi, G.Y. and Giribet, G. (2010) Are there true cosmopolitan sipunculan worms? A genetic variation study within Phascolosoma perlucens (Sipuncula, Phascolosomatidae). Marine Biology 157, 1471–1431.CrossRefGoogle Scholar
Kiene, W.E. (1988) A model on bioerosion on the Great Barrier Reef. In Choat, J.H., Barnes, D., Borowitzka, M.A., Joll, J.C., Davies, P.J., Flood, P., Hatcher, B.G., Hopley, D., Hutchings, P.A., Kinsey, D., Orme, G.R., Pichon, M., Sale, P.F., Sammarco, P., Wallace, C.C., Wilkinson, C., Wolanski, E. and Bellwood, O. (eds) Proceedings of the 6th International Coral Reef Symposium Townsville, Australia, Volume 1, pp. 449454.Google Scholar
McCloskey, L.R. (1970) The dynamics of the community associated with marine scleractinian coral. Internationale Revue der gesamten Hidrobiologie und Hydrographie 55, 1381.CrossRefGoogle Scholar
Moreno-Forero, S.K., Navas, G.R. and Solano, O.D. (1998) Cryptobiota associated to dead Acropora palmata (Scleractinia: Acroporidae) coral, Isla Grande, Colombian Caribbean. Revista de Biología Tropical 46, 229236.Google Scholar
Murina, G.V. (1975) The geographical distribution of marine worms of the phylum sipuncula of the world ocean In Rice, M.E. and Todorovic, M. (eds) Proceedings of the International Symposium on the Biology of the Sipuncula and Echiura. Belgrade: Naucno Delo Press, Volume 1, pp. 318.Google Scholar
Murina, G.V. (1984) Ecology of sipuncula. Marine Ecology Progress Series 17, 17.CrossRefGoogle Scholar
Perry, C.T. (1998) Macroborers within coral framework at Discovery Bay, north Jamaica: species distribution and abundance, and effects on coral preservation. Coral Reefs 17, 277287.CrossRefGoogle Scholar
Peyrot-Clausade, M. (1974) Ecological study of coral reef cryptobiotic communities: an analysis of the polychaete cryptofauna In Cameron, A.M., Cambell, B.M., Cribb, A.B., Endean, R., Jell, J.S., Jones, O.A., Mather, P. and Talbot, F.H. (eds) Proceedings 2nd International Coral Reef Symposium. Brisbane: Great Barrier Reef Committee, Volume 1, pp. 269283.Google Scholar
Peyrot-Clausade, M. and Brunel, J-F. (1990) Distribution patterns of macroboring organisms on Tulear reef flats (SW Madagascar). Marine Ecology Progress Series 61, 133144.CrossRefGoogle Scholar
Peyrot-Clausade, M., Hutchings, P. and Richard, G. (1992) Temporal variations of macroborers in massive Porites lobata on Moorea, French Polynesia. Coral Reefs 11, 161166.CrossRefGoogle Scholar
Quinn, G.P. and Keough, M.J. (2002) Experimental design and data analysis for biologists. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ramírez, G. (1990) Distribución de nutrientes inorgánicos en las aguas costeras de la región de Santa Marta, Caribe colombiano. In VII Seminario Nacional de Ciencia y Tecnología del Mar, Cali, Colombia. pp. 244254.Google Scholar
Reyes, J. and Santodomingo, N. (2002) Manual de indentificación CITES de invertebrados marinos de Colombia. Serie de documentos generales/INVEMAR No. 8; Serie de manual de indentificación CITES de Colombia.Google Scholar
Rice, M. (1975) Survey of the sipuncula of the coral and beach-rock communities of the caribbean sea. In Rice, M.E. and Todorovic, M. (eds) Proceedings of the International Symposium on the Biology of Sipuncula and Echiura. Belgrade: Naucno Delo Press, Volume 1, pp. 3549.Google Scholar
Rice, M. (1976) Sipunculans associated with coral communities. Micronesica 12, 119132.Google Scholar
Rice, M. and MacIntyre, I.G. (1982) Distribution of Sipuncula in the coral reef community, Carry Bow Cay, Belize. In Rutzler, K. and MacIntyre, I.G. (eds) The Atlantic Barrier Reef Ecosystem at Carrie Bow Cay. Structure and community. Smithsonian Contribution to Marine Science 12, pp. 311320.Google Scholar
Schulze, A. (2005) Sipuncula (Peanut Worms) from Bocas del Toro, Panamá. Caribbean Journal of Sciences 41, 523527.Google Scholar
Schulze, A. and Rice, M.E. (2004) Sipunculan diversity at Twin cays, Belize with a key to the species. Atoll Research Bulletin 521, 19.Google Scholar
Veron, J. (2000) Corals of the world. Volume 3. Townsville, Queensland: Australian Institute of Marine Sciences.Google Scholar
Zar, J. (2010) Biostatistical analysis. 5th edition. Upper Saddle River, NJ: Prentice-Hall.Google Scholar