Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T07:07:08.155Z Has data issue: false hasContentIssue false

Reduction of RBL–2H3 cells degranulation by nitroaromatic compounds from a Bacillus strain associated to the Amazonian sponge Metania reticulata

Published online by Cambridge University Press:  20 July 2015

Enrique E. Rozas
Affiliation:
INCT Energia, Ambiente e Biodiversidade, Universidade do Estado do Amazonas, Manaus, AM, Brazil Departmento de Fisiologia Geral. Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
Maria A. Mendes
Affiliation:
CEPEMA, PQI-Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
Cláudio A.O. Nascimento
Affiliation:
CEPEMA, PQI-Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
José C.V. Rodrigues
Affiliation:
INCT Energia, Ambiente e Biodiversidade, Universidade do Estado do Amazonas, Manaus, AM, Brazil University of Puerto Rico, Jardim Botânico Sur, San Juan, PR 00926-1118, USA
Rodolpho M. Albano
Affiliation:
Departmento de Bioquímica, IBRAG, Universidade do Estado do Rio de Janeiro, RJ, Brazil
Márcio R. Custódio*
Affiliation:
Departmento de Fisiologia Geral. Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
*
Correspondence should be addressed to:M.R.Custódio, Departamento de Fisiologia Geral (IB–USP), Rua do Matão, travessa 14, n. 101, Cidade Universitária, São Paulo, SP CEP 05508–090, Brazil email: [email protected]

Abstract

Symbionts in sponges must interact with the host immune system, and this can be mediated by immunomodulators. As the bases of the immune system in sponges resemble those of higher metazoans, it is possible that compounds from this microbiota show similar effects in other phyla. It is also known that several antibiotics, in special macrolides, can modulate many components of the immune response and sponges and their associated microorganisms are a rich source of these compounds. Therefore, we tested the immunosuppressive capacity of antibiotic substances produced by bacterial and fungal strains isolated from the Amazon freshwater sponge Metania reticulata. Fourteen bacterial and six fungal strains were obtained from samples of M. reticulata collected in the Negro River (Amazon Central Basin region), during the dry season. These cultures were monitored for natural antimicrobial activity, and two Bacillus strains (MERETb.761 and MERETb.762) and one fungus (MERETf.010) were selected. One Bacillus strain, MERETb.762, showed strong and specific antibiosis on Staphylococcus aureus and two fractions of its extract inhibited the degranulation of RBL–2H3 cells. The predicted formulas of these fractions were C12H6N4O8 and C25H4N2O6, both corresponding to nitroaromatic compounds.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altenburg, J., de Graaff, C.S., van der Werf, T.S. and Boersma, W.G. (2011) Immunomodulatory effects of macrolide antibiotics – part 1: biological mechanisms. Respiration 81, 6774.CrossRefGoogle ScholarPubMed
Barros, I.B., Volkmer-Ribeiro, C. and Veiga Junior, V.F. (2013) Sterols from sponges of Anavilhanas. Biochemical Systematics and Ecology 49, 167171.CrossRefGoogle Scholar
Blunt, J.W., Copp, B.R., Keyzers, R.A., Munro, M.H.G. and Prinsep, M.R. (2014) Marine natural products. Natural Products Reports 31, 160258.CrossRefGoogle ScholarPubMed
Corsaro, D., Venditti, D., Padula, M. and Valassina, M. (1999) Intracellular life. Critical Reviews in Microbiology 25, 3979.CrossRefGoogle ScholarPubMed
Costantino, V., Fattorusso, E., Mangoni, A., Di Rosa, M. and Ianaro, A. (1999) Glycolipids from sponges. VII. 1 simplexides, novel immunosuppressive glycolipids from the Caribbean sponge Plakortis simplex. Bioorganic and Medicinal Chemistry Letters 9, 271276.CrossRefGoogle ScholarPubMed
Cruz, A., Alencar, V., Medina, N., Volkmer-Ribeiro, C., Gattás, V. and Luna, E. (2013) Dangerous waters: outbreak of eye lesions caused by fresh water sponge spicules. Eye 27, 398402.CrossRefGoogle ScholarPubMed
Custódio, M.R. and Hajdu, E. (2011) Checklist de Porifera do Estado de São Paulo, Brasil. Biota Neotropica, 11, 117.CrossRefGoogle Scholar
Finch, R. (1980) Immunomodulating effects of antimicrobial agents. Journal of Antimicrobial Chemotherapy 6, 691699.CrossRefGoogle ScholarPubMed
Funaba, M., Ikeda, T. and Abe, M. (2003) Degranulation in RBL-2H3 cells: regulation by calmodulin pathway. Cell Biology International 27, 879885.CrossRefGoogle ScholarPubMed
Hirayama, T., Iguchi, K. and Watanabe, T. (1990) Metabolic activation of 2,4-dinitrobiphenyl derivatives for their mutagenicity in Salmonella typhimurium TA98. Mutation Research 243, 201206.Google Scholar
Jadulco, R., Brauers, G., Edrada, R.A., Ebel, R., Wray, V., Sudarsono, E. and Proksch, P. (2002) New metabolites from sponge-derived fungi Curvularia lunata and Cladosporium herbarum. Journal of Natural Products 65, 730733.CrossRefGoogle ScholarPubMed
Lee, Y.K., Lee, J-H. and Lee, H.K. (2001) Microbial symbiosis in marine sponges. Journal of Microbiology 39, 254264.Google Scholar
Müller, C., Blumbach, B., Krasko, A. and Schröder, H.C. (2001) Receptor protein-tyrosine phosphatases: origin of domains (catalytic domain, Ig-related domain, fibronectin type III module) based on the sequence of the sponge Geodia cydonium. Gene 262, 221230.CrossRefGoogle ScholarPubMed
Müller, W.E.G. (1998) Origin of Metazoa: sponges as living fossils. Naturwissenschaften 85, 1125.CrossRefGoogle ScholarPubMed
Müller, W.E.G., Böhm, M., Grebenjuk, V.A., Skorokhod, A., Müller, I.M. and Gamulin, V. (2002) Conservation of the positions of metazoan introns from sponges to humans. Gene 295, 299309.CrossRefGoogle ScholarPubMed
Müller, W.E.G., Koziol, C., Müller, I. and Wiens, M. (1999) Towards an understanding of the molecular basis of immune responses in sponges: the marine demosponge Geodia cydonium as a model. Microscopy Research and Technique 44, 219236.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Narenjkar, J., Assem, E.K., Wan, B.Y.C., Marsh, S. and Ezeamuzie, C.I. (2006) Effect of cyclosporin and tacrolimus (FK506) on the antigen-induced mediator release, membrane potential and 86Rb+/K+ and Ca2+ fluxes in the RBL-2H3 cell line. International Immunopharmacology 6, 742749.CrossRefGoogle Scholar
Passante, E. and Frankish, N. (2009) The RBL-2H3 cell line: its provenance and suitability as a model for the mast cell. Inflammation Research 58, 737745.CrossRefGoogle Scholar
Pfannkuchen, M., Fritz, G.B., Schlesinger, S., Bayer, K. and Brümmer, F. (2009) In situ pumping activity of the sponge Aplysina aerophoba, Nardo 1886. Journal of Experimental Marine Biology and Ecology 369, 6571.CrossRefGoogle Scholar
Pile, A.J., Patterson, M. and Witman, J. (1996) In situ grazing on plankton <10 µm by the boreal sponge Mycale lingua. Marine Ecology Progress Series 141, 95102.CrossRefGoogle Scholar
Purohit, V. and Basu, A.K. (2000) Mutagenicity of nitroaromatic compounds. Chemical Research in Toxicology 13, 673692.CrossRefGoogle ScholarPubMed
Reato, G., Cuffini, A.M., Tullio, V., Mandras, N., Roana, J., Banche, G., Foa, R. and Carlone, N.A. (2004) Immunomodulating effect of antimicrobial agents on cytokine production by human polymorphonuclear neutrophils. International Journal of Antimicrobial Agents 23, 150154.CrossRefGoogle ScholarPubMed
Ruzicka, R. and Gleason, D.F. (2008) Latitudinal variation in spongivorous fishes and effectiveness of sponge chemical defenses. Oecologia 154, 785794.CrossRefGoogle ScholarPubMed
Sabella, C., Faszewski, E., Himic, L., Colpitts, K.M., Kaltenbach, J., Burger, M.M. and Fernandez-Busquets, X. (2007) Cyclosporin A suspends transplantation reactions in the marine sponge Microciona prolifera. Journal of Immunoology 179, 59275935.CrossRefGoogle ScholarPubMed
Schippers, K.J., Sipkema, D., Osinga, R., Smidt, H., Pomponi, S., Martens, D.E. and Wijffels, R.H. (2012) Cultivation of sponges, sponge cells and symbionts: achievements and future prospects. Advances in Marine Biology 62, 273337.CrossRefGoogle ScholarPubMed
Simpson, T.L. (1984) The cell biology of sponges. New York, NY: Springer-Verlag.CrossRefGoogle Scholar
Sipkema, D., Schippers, K., Maalcke, W.J., Yang, Y., Salim, S. and Blanch, W.H. (2011) Multiple approaches to enhance the cultivability of bacteria associated with the marine sponge Haliclona (Gellius) sp. Applied Environmental Microbiology 77, 21302140.CrossRefGoogle ScholarPubMed
Tamaoki, J. (2004) The effects of macrolides on inflammatory cells. Chest 125, 41S51S.CrossRefGoogle ScholarPubMed
Taylor, M.W., Radax, R., Steger, D. and Wagner, M. (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiology and Molecular Biology Reviews 71, 295347.CrossRefGoogle ScholarPubMed
Turon, X., Marti, R. and Uriz, M.J. (2009) Chemical bioactivity of sponges along an environmental gradient in a Mediterranean cave. Scientia Marina 73, 387397.CrossRefGoogle Scholar
Turque, A., Cardoso, A., Silveira, C., Vieira, R., Freitas, F., Albano, R., Gonzalez, A., Paranhos, R., Muricy, G. and Martins, O. (2008) Bacterial communities of the marine sponges Hymeniacidon heliophila and Polymastia janeirensis and their environment in Rio de Janeiro, Brazil. Marine Biology 155, 135146.CrossRefGoogle Scholar
Volkmer-Ribeiro, C., Lenzi, H.L., Oréfice, F., Pelajo-Machado, M., Alencar, L.M., Fonseca, C.F., Batista, T.C.A., Manso, P.P.A., Coelho, J. and Machado, M. (2006) Freshwater sponge spicules: a new agent of ocular pathology. Memórias do Instituto Oswaldo Cruz 101, 899903.CrossRefGoogle ScholarPubMed
Webster, N., Negri, A., Munro, M. and Battershill, C.N. (2004) Diverse microbial communities inhabit Antarctic sponges. Environmental Microbiology 6, 288300.CrossRefGoogle ScholarPubMed
White, T.J., Bruns, T., Lee, S. and Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M.A., Gelfand, D.F., Sninsky, J.J. and White, T.J. (eds) PCR protocols: a guide to methods and applications. San Diego, CA: Academic Press, pp. 315322.Google Scholar
Wiens, M., Korzhev, M., Perovic-Ottstadt, S., Luthringer, B., Brandt, D., Klein, S. and Müller, W.E.G. (2007) Toll-like receptors are part of the innate immune defense system of sponges (Demospongiae: Porifera). Molecular Biology and Evolution 24, 792804.CrossRefGoogle ScholarPubMed
Yan, P.K., Nanamori, M., Sun, M.L., Zhou, C.H., Cheng, N., Li, N., Zheng, W., Xiao, L.H., Xie, X., Ye, R.D. and Wang, M.W. (2006) The immunosuppressant Cyclosporin A antagonizes human formyl peptide receptor through inhibition of cognate ligand binding. Journal of Immunology 177, 70507058.CrossRefGoogle ScholarPubMed