Hostname: page-component-6bf8c574d5-mggfc Total loading time: 0 Render date: 2025-02-18T21:49:48.892Z Has data issue: false hasContentIssue false

Population structure of the endangered green turtles in a feeding ground in Brazilian Northeast: insights for conservation strategies

Published online by Cambridge University Press:  12 February 2025

Daniel Solon Dias de Farias*
Affiliation:
Programa de Doutorado em Desenvolvimento e Meio Ambiente – DDMA, Universidade Federal do Rio Grande do Norte (UFRN), CEP 59075-000, Natal/RN, Brazil Projeto Cetáceos da Costa Branca – Universidade do Estado do Rio Grande do Norte (PCCB-UERN), Campus Central, CEP 59600-000, Mossoró/RN, Brazil Centro de Estudos e Monitoramento Ambiental (CEMAM), CEP 59655-000, Areia Branca/RN, Brazil Laboratório de Morfofisiologia de Vertebrados, Departamento de Morfologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), CEP 59075-000, Natal/RN, Brazil
Roberta Ramblas Zamana
Affiliation:
Centro de Estudos e Monitoramento Ambiental (CEMAM), CEP 59655-000, Areia Branca/RN, Brazil Laboratório de Patologia Comparada de Animais Selvagens (LAPCOM), Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, CEP 05508-270, São Paulo/SP, Brazil
Aline da Costa Bomfim Ventura
Affiliation:
Programa de Doutorado em Desenvolvimento e Meio Ambiente – DDMA, Universidade Federal do Rio Grande do Norte (UFRN), CEP 59075-000, Natal/RN, Brazil Projeto Cetáceos da Costa Branca – Universidade do Estado do Rio Grande do Norte (PCCB-UERN), Campus Central, CEP 59600-000, Mossoró/RN, Brazil Centro de Estudos e Monitoramento Ambiental (CEMAM), CEP 59655-000, Areia Branca/RN, Brazil Laboratório de Morfofisiologia de Vertebrados, Departamento de Morfologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), CEP 59075-000, Natal/RN, Brazil
Flávio José de Lima Silva
Affiliation:
Projeto Cetáceos da Costa Branca – Universidade do Estado do Rio Grande do Norte (PCCB-UERN), Campus Central, CEP 59600-000, Mossoró/RN, Brazil Centro de Estudos e Monitoramento Ambiental (CEMAM), CEP 59655-000, Areia Branca/RN, Brazil
Simone Almeida Gavilan
Affiliation:
Projeto Cetáceos da Costa Branca – Universidade do Estado do Rio Grande do Norte (PCCB-UERN), Campus Central, CEP 59600-000, Mossoró/RN, Brazil Centro de Estudos e Monitoramento Ambiental (CEMAM), CEP 59655-000, Areia Branca/RN, Brazil Laboratório de Morfofisiologia de Vertebrados, Departamento de Morfologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), CEP 59075-000, Natal/RN, Brazil
Vinícius Gabriel da Silva Santana
Affiliation:
Programa de Doutorado em Desenvolvimento e Meio Ambiente – DDMA, Universidade Federal do Rio Grande do Norte (UFRN), CEP 59075-000, Natal/RN, Brazil Projeto Cetáceos da Costa Branca – Universidade do Estado do Rio Grande do Norte (PCCB-UERN), Campus Central, CEP 59600-000, Mossoró/RN, Brazil Centro de Estudos e Monitoramento Ambiental (CEMAM), CEP 59655-000, Areia Branca/RN, Brazil
Igor Peres Puertas
Affiliation:
Laboratório de Anfíbios e Répteis, Departamento de Botânica e Zoologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), CEP 59075-000, Natal/RN, Brazil Laboratório de Estudos para a Pesca Responsável, Núcleo de Recursos Renováveis, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), CEP 96203-900, Rio Grande/RS, Brazil
Marco Aurélio Gattamorta
Affiliation:
Laboratório de Patologia Comparada de Animais Selvagens (LAPCOM), Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, CEP 05508-270, São Paulo/SP, Brazil Aquário Municipal de Santos, Santos/SP, Brazil
Eliana Reiko Matushima
Affiliation:
Laboratório de Patologia Comparada de Animais Selvagens (LAPCOM), Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, CEP 05508-270, São Paulo/SP, Brazil
Viviane Souza do Amaral
Affiliation:
Programa de Doutorado em Desenvolvimento e Meio Ambiente – DDMA, Universidade Federal do Rio Grande do Norte (UFRN), CEP 59075-000, Natal/RN, Brazil Laboratório de Genética Toxicológica, Departamento de Biologia e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), CEP 59075-000, Natal/RN, Brazil
*
Corresponding author: Daniel Solon Dias de Farias; Email: [email protected]

Abstract

Understanding the population structure and genetic diversity of green turtles is crucial for effective conservation. This study investigated the occurrence, genetic composition, and potential origins of green turtles (Chelonia mydas) in the Potiguar Basin, northeastern Brazil, based on stranding data from 2010 to 2019. Analysis revealed that 87.36% of the population consisted of juveniles, primarily females with a curved carapace length (CCL) between 30 and 59.9 cm. Genetic analysis of the mtDNA control region (481 bp, n = 39) revealed eight haplotypes, with CM-A8 (48.7%) and CM-A5 (30.8%) being the most common. This may be related to the geographic position of the Potiguar Basin, located in the ‘corner’ of the South American continent. High haplotype diversity and low nucleotide diversity were observed, consistent with other Brazilian foraging grounds. Mixed stock analysis identified Ascension Island as the primary source population, followed by Guinea-Bissau and Surinam. The results highlight the importance of the Potiguar Basin as a foraging area for green turtles and emphasize the need for comprehensive conservation strategies to protect this vulnerable population.

Type
Research Article
Copyright
Copyright © The Author(s), 2025. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abreu-Grobois, FA, Horrocks, J, Formia, A, LeRoux, R, Velez-Zuazo, X, Dutton, P, Soares, L, Meylan, P and Browne, D (2006) New mtDNA D-loop primers which work for a variety of marine turtle species may increase the resolution of mixed stock analysis. In Frick, M, Panagopoulou, A, Rees, AF and Williams, K (compilers), Book of Abstracts. Twenty Sixth Annual Symposium on Sea Turtle Biology and Conservation, Greece: International Sea Turtle Society, Greece, 3–8 April 2006, p. 179.Google Scholar
Almeida, AP, Moreira, LMP, Bruno, SC, Thomé, JCA, Martins, AS, Bolten, AB and Bjorndal, KA (2011) Green turtle nesting on Trindade Island, Brazil: abundance, trends, and biometrics. Endangered Species Research 14, 193201.CrossRefGoogle Scholar
Almeida, JPFA, Santos, RG and Mott, T (2021) Sex ratios and natal origins of green turtles from feeding grounds in the Southwest Atlantic Ocean. ICES Journal of Marine Science 78, 18401848.CrossRefGoogle Scholar
Arthur, KE, Boyle, MC and Limpus, CJ (2008) Ontogenetic changes in diet and habitat use in green turtle (Chelonia mydas) life history. Marine Ecology Progress Series 362, 303311.CrossRefGoogle Scholar
Attademo, FLN (2007) Caracterização da pesca artesanal e interação com mamíferos marinhos na região da Costa Branca do Rio Grande do Norte (MS thesis). Universidade do Estado do Rio Grande do Norte, Rio Grande do Norte, Brazil.Google Scholar
Avise, JC (2007) Conservation genetics of marine turtles – ten years later. In Hewitt, D and Fulbright, T (eds), Frontiers in Wildlife Science: Linking Ecological Theory and Management Applications. Boca Raton, FL: CRC Press, pp. 295314.CrossRefGoogle Scholar
Bandelt, H, Forster, P and Röhl, A (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16, 3748.CrossRefGoogle ScholarPubMed
Bass, AL, Epperly, SP and Braun-Mcneill, J (2006) Green turtle (Chelonia mydas) foraging and aggregation in the Caribbean and Atlantic: impact of currents and behaviour on dispersal. Journal of Heredity 97, 346354.CrossRefGoogle ScholarPubMed
Bass, AL and Witzell, WN (2000) Demographic composition of immature green turtles (Chelonia mydas) from the east central Florida coast: evidence from mtDNA markers. Herpetologica 56, 357367.Google Scholar
Bjorndal, KA (1997) Foraging ecology and nutrition of sea turtles. In Lutz, PL and Musick, J (eds), The Biology of Sea Turtles, Vol, I. Boca Raton, FL: CRC Press, pp. 199231.Google Scholar
Bjorndal, KA (2000) Prioridades para la investigación en habitats de alimentación. In Técnicas de Investigación y Manejo para la Conservacion de Las Tortugas Marinas. Grupo Especialista en Tortugas Marinas IUCN/CSE.Google Scholar
Bjorndal, KA and Bolten, AB (1988) Growth rates of immature green turtles, Chelonia mydas, on feeding grounds in the southern Bahamas. Copeia 3, 555564.CrossRefGoogle Scholar
Bjorndal, KA, Bolten, AB, Moreira, L, Bellini, C and Marcovaldi, MA (2006) Population structure and diversity of Brazilian green turtle rookeries based on mitochondrial DNA sequences. Chelonian Conservation and Biology 5, 262268.CrossRefGoogle Scholar
Bjorndal, KA, Bolten, AB and Tröeng, S (2005) Population structure and genetic diversity in green turtles nesting at Tortuguero, Costa Rica, based on mitochondrial DNA control region sequences. Marine Biology 147, 14491457.CrossRefGoogle Scholar
Bolker, BM, Okuyama, T, Bjorndal, KA and Bolten, AB (2007) Incorporating multiple mixed stocks in mixed stock analysis: ‘many-to-many’ analyses. Molecular Ecology 16, 685695.CrossRefGoogle ScholarPubMed
Bolten, AB (1999) Techniques for measuring sea turtles. In Eckert, KL, Bjorndal, KL, Abru-Grobois, FA and Donnelly, M (eds), Research and Management Techniques for the Conservation of Sea Turtles. IUCN/SSC Publication No. 4. Blanchard, PA: Consolidated Graphic Communications, pp. 110114.Google Scholar
Bolten, AB (2003) Variation in sea turtle life history patterns: neritic vs. oceanic developmental stages. In Lutz, PL, Musick, JA and Wyneken, J (eds), The Biology of Sea Turtles, Vol. II. New York, NY: CRC Press, pp. 243257.Google Scholar
Bomfim, AC, Farias, DSD, Silva, FJL, Rossi, S, Santana, VGS and Pontes, CS (2022) Impact of the socioeconomic activities on sea turtle conservation in the Potiguar Basin, northeastern Brazil (2010–2019). Marine and Freshwater Research 73, 637650.CrossRefGoogle Scholar
Bondioli, ACV (2009) Estrutura populacional e variabilidade genética de tartaruga verde (Chelonia mydas) da região de Cananéia, São Paulo (PhD thesis). Instituto de Biociências da Universidade de São Paulo, Brazil.Google Scholar
Bowen, BW and Karl, SA (2007) Population genetics and phylogeography of sea turtles. Molecular Ecology 16, 49074986.CrossRefGoogle ScholarPubMed
Brand-Gardner, SJ, Lanyon, JM and Limpus, CJ (1999) Diet selection by immature green turtles, Chelonia mydas, in subtropical Moreton Bay, southeast Queensland. Australian Journal of Zoology 47, 181191.CrossRefGoogle Scholar
Broderick, AC, Fraunstein, R, Glen, F, Hays, GC, Jackson, AL, Pelembe, T, Ruxton, GD and Godley, BJ (2006) Are green turtles globally endangered? Global Ecology and Biogeography 15, 2126.CrossRefGoogle Scholar
Dutton, PH, Balazs, GH, Leroux, RA, Murakawa, SKK, Zarate, P and Martínez, LS (2008) Composition of Hawaiian green turtle foraging ground aggregations: mtDNA evidence for a distinct regional population. Endangered Species Research 5, 3744.CrossRefGoogle Scholar
Encalada, SE, Lahanas, PN, Bjorndal, KA, Bolten, AB, Miyamoto, MM and Bowens, BW (1996) Phylogeography and population structure of the Atlantic and Mediterranean green turtle Chelonia mydas: a mitochondrial DNA control region sequence assessment. Molecular Ecology 5, 473483.CrossRefGoogle ScholarPubMed
Excoffier, L and Lischer, HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564567.CrossRefGoogle ScholarPubMed
Farias, DSD, Alencar, AEB, Bomfim, AC, Fragoso, ABL, Rossi, S, Moura, GJB, Gavilan, SA and Silva, FJL (2019) Marine turtles stranded in northeastern Brazil: composition, spatio-temporal, distribution and anthropogenic interactions. Chelonian Conservation and Biology 5, 18.Google Scholar
Farias, DSD, Ventura, ACB, Silva, FJL, Cavalcante, RMS, Rossi, S, Gavilan, SA, Santana, VGS and Amaral, VS (2023) The use of an alimentary index to assess anthropogenic debris on green turtles (Chelonia mydas). Marine Pollution Bulletin 193, 115184.CrossRefGoogle ScholarPubMed
Formia, A (2002) Population and genetic structure of the green turtle (Chelonia mydas) in west and central Africa; implications for management and conservation (PhD thesis). Cardiff University, UK.Google Scholar
Formia, A, Broderick, A, Glen, F, Godley, B, Hays, G and Bruford, MW (2007) Genetic composition of the Ascension Island green turtle rookery based on mitochondrial DNA: implications for sampling and diversity. Endangered Species Research 3, 145158.CrossRefGoogle Scholar
Formia, A, Godley, BJ, Dontaine, JF and Bruford, MW (2006) Mitochondrial DNA diversity and phylogeography of endangered green turtle (Chelonia mydas) populations in Africa. Conservation Genetics 7, 353369.CrossRefGoogle Scholar
Gallo, BMG, Macedo, S, Giffoni, BB, Becker, JH and Barata, PCR (2000) A Base do Projeto TAMAR-IBAMA em Ubatuba (Estado de São Paulo, Brasil): Conservação das Tartarugas Marinhas em uma Área de Alimentação. In Resumo da XIII Semana Nacional de Oceanografia. Itajaí, SC, Brazil, pp. 500505.Google Scholar
Gelman, A and Rubin, DB (1992) Inference from iterative simulation using multiple sequences. Statistical Science 7, 457511.CrossRefGoogle Scholar
Godley, BJ., Broderick, AC, Frauenstein, R, Glen, F and Hays, GC (2002) Reproductive seasonality and sexual dimorphism in green turtles. Marine Ecology Progress Series 226, 125133.CrossRefGoogle Scholar
Hamann, M, Fuentes, MMPB, Ban, NC and Mocellin, VJL (2013) Climate change and marine turtles. In Wyneken, J, Lohmann, KJ and Musik, JA (eds), The Biology of Sea Turtles, Vol III. Boca Raton, FL: CRC Press, pp. 353378.Google Scholar
Harnik, PG, Lotze, HK, Anderson, SC, Finkel, ZV, Finnegan, S, Lindberg, DR, Liow, LH, Lockwood, R, McClain, CR, McGuire, JL, O'Dea, A, Pandolfi, JM, Simpson, C and Tittensor, DP (2012) Extinctions in ancient and modern seas. Trends in Ecology & Evolution 27, 608617.CrossRefGoogle ScholarPubMed
Hays, GC, Mazaris, AD and Schofield, G (2014) Different male vs. female breeding periodicity helps mitigate offspring sex ratio skews in sea turtles. Frontiers in Marine Science 1, 19.CrossRefGoogle Scholar
IUCN – International Union for Conservation of Nature (2023) The IUCN Red List of Threatened Species, 2023. https://www.iucnredlist.org (Accessed online 15 March 2024).Google Scholar
Jensen, MP, Fitzsimmons, NN and Dutton, PH (2013) Molecular genetics of sea turtles. In Wyneken, J, Lohmann, KJ and Musik, JA (eds), The Biology of Sea Turtles, Vol. III. Boca Raton, FL: CRC Press, pp. 135161.Google Scholar
Jordão, JC, Bondioli, ACV, Guebert, FM, Thoisy, B and Toledo, LFA (2015) Green turtle (Chelonia mydas) genetic diversity at Paranaguá Estuarine Complex feeding ground in Brazil. Genetics and Molecular Biology 38, 346352.CrossRefGoogle ScholarPubMed
Komoroske, LM, Jensen, MP, Stewart, KR, Shamblin, BM and Dutton, PH (2017) Advances in the application of genetics in marine turtle biology and conservation. Frontiers in Marine Science 4, 156. doi: 10.3389/fmars.2017.00156CrossRefGoogle Scholar
Kouerey Oliwina, CK, Honarvar, S, Girard, A and Casale, P (2020) Sea turtles in the West Africa/East Atlantic Region. MTSG Annual Regional Report 2020. Report of the IUCN-SSC Marine Turtle Specialist Group.Google Scholar
Kumar, S, Stecher, G, Li, M, Knyaz, C and Tamura, K (2018) MEGAX: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35, 15471549.CrossRefGoogle Scholar
Lahanas, PN, Miyamoto, MM, Bjordnal, KA and Bolten, AB (1994) Molecular evolution and population genetics of Greater Caribbean green turtles (Chelonia mydas) as inferred from mitochondrial DNA control region sequences. Genetica 94, 5767.CrossRefGoogle ScholarPubMed
Laloe, JO, Esteban, N, Berkel, J and Hays, GC (2016) Sand temperatures for nesting sea turtles in the Caribbean: implications for hatchling sex ratios in the face of climate change. Journal of Experimental Marine Biology and Ecology 474, 9299.CrossRefGoogle Scholar
Leigh, JW and Bryant, D (2015) PopART: full-feature software for haplotype network construction. Methods in Ecology Evolution 6, 11101116.CrossRefGoogle Scholar
Lenz, AJ (2013) Estimativa de idade e crescimento de Caretta caretta e Chelonia mydas no litoral sul do Brasil através de esqueletocronologia (MS thesis). Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.Google Scholar
Luke, K, Horrocks, JA, Leroux, RA and Dutton, PH (2004) Origins of green turtle (Chelonia mydas) feeding aggregations around Barbados, West Indies. Marine Biology 144, 799805.CrossRefGoogle Scholar
Marcovaldi, MA, Thomé, J and Fallabrino, A (2021) Sea turtles in the Atlantic Southwest Region. MTSG Annual Regional Report 2021. Draft Report to the IUCN-SSC Marine Turtle Specialist Group.Google Scholar
Meylan, AB and Meylan, PA (1999) An Introduction to the evolution, life history and biology of sea turtles. In Eckert, KL, Bjorndal, KA, Abreu-Grobois, FA and Donnelly, M (eds), Research and Management Techniques for the Conservation of Sea Turtles, IUCN/SSC Publication No. 4. Blanchard, PA: Consolidated Graphic Communications, pp. 35.Google Scholar
Moritz, C (1994) Defining ‘evolutionary significant units for conservation’. Trends in Ecology and Evolution 9, 373375.CrossRefGoogle Scholar
Nalovic, MA, Ceriani, SA, Fuentes, MMPB, Pfaller, JB, Wildermann, NE, Uribe-Martínez, A and Cuevas, E (2021) Sea turtles in the North Atlantic & Wider Caribbean Region. MTSG Annual Regional Report 2021. Draft Report to the IUCN-SSC Marine Turtle Specialist Group.Google Scholar
Naro-Maciel, E, Becker, HJ, Lima, EHSM, Marcovaldi, MA and DeSalle, R (2007) Testing dispersal hypotheses in foraging green sea turtles (Chelonia mydas) of Brazil. Journal of Heredity 97, 2939.Google Scholar
Naro-Maciel, E, Bondioli, ACV, Martin, M, Almeida, AP, Baptistotte, C, Bellini, C, Marcovaldi, MA, Santos, AJB and Amato, G (2012) The interplay of homing and dispersal in green turtles: a focus on the Southwestern Atlantic, Journal of Heredity 103, 792805.CrossRefGoogle ScholarPubMed
Nei, M (1987) Molecular Evolutionary Genetics. West Sussex: Columbia University Press.CrossRefGoogle Scholar
Patrício, AR, Formia, A, Barbosa, C, Broderick, AC, Bruford, M, Carreras, C, Catry, P, Ciofi, C, Regalla, A and Godley, BJ (2017) Dispersal of green turtles from Africa's largest rookery assessed through genetic markers. Marine Ecology Progress Series 569, 215225.CrossRefGoogle Scholar
Pella, J and Masuda, M (2001) Bayesian methods for analysis of stock mixtures from genetic characters. Fishery Bulletin 99, 151167.Google Scholar
Peltier, H, Dabin, W, Daniel, P, Canneyt, OV, Doremus, G, Huon, M and Ridoux, V (2012) The significance of stranding data as indicators of cetacean populations at sea: modelling the drift of cetacean carcasses. Ecological Indicators 18, 278290.CrossRefGoogle Scholar
Proietti, MC, Reisser, JW, Kinas, PG, Kerr, R, Monteiro, DS, Marins, LF and Secchi, ER (2012) Green turtle Chelonia mydas mixed stocks in the western South Atlantic, as revealed by mtDNA haplotypes and drifter trajectories. Marine Ecology Progress Series 447,195209.CrossRefGoogle Scholar
Prosdocimi, L, Carman, VG, Albareda, DA and Remis, MI (2012) Genetic composition of green turtle feeding grounds in coastal waters of Argentina based on mitochondrial DNA. Journal of Experimental Marine Biology and Ecology 412, 3745.CrossRefGoogle Scholar
Pyenson, N (2010) Carcasses on the coastline: measuring the ecological fidelity of the cetacean stranding record in the eastern North Pacific Ocean. Paleobiology 36, 453480.CrossRefGoogle Scholar
R Core Team (2022) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Ruiz-Urquiola, A, Riveron-Giro, FBF, Perez-Bermudez, E, Abreu-Grobois, FA, González-Pumariega, M, James-Petric, B, Dıaz-Fernandez, R, Álvares-Castro, JM, Jager, M, Azanza-Ricardo, J and Espinoza-López, G (2010) Population genetic structure of greater Caribbean green turtles (Chelonia mydas) based on mitochondrial DNA sequences, with an emphasis on rookeries from southwestern Cuba. Revista de Investigaciones Marinas 31, 3352.Google Scholar
Sales, G, Giffoni, BG and Barata, PCR (2008) Incidental catch of sea turtles by the Brazilian pelagic longline fishery. Journal of the Marine Biological Association of the United Kingdom 88, 853864.CrossRefGoogle Scholar
Savada, CS, Prosdocimi, L, Domit, C and Almeida, FS (2021) Multiple haplotypes of Chelonia mydas juveniles in a threatened hotspot area in Southern Brazil. Genetics and Molecular Biology 44, e20200410.CrossRefGoogle Scholar
Sears, CJ, Bowen, BW, Chapman, RW, Galloway, SB, Hopkins-Murphy, SR and Woodley, CM (1995) Demographic composition of the feeding population of juveniles loggerhead sea turtles (Caretta caretta) of Charleston South Carolina: evidence from mitochondrial DNA markers. Marine Biology 123, 869874.CrossRefGoogle Scholar
Shamblin, BM, Bjorndal, KA, Bolten, AB, Hillis-Starr, ZM, Lundgren, I, Naro-Maciel, E and Nairn, CJ (2012) Mitogenomic sequences better resolve stock structure of southern Greater Caribbean green turtle rookeries. Molecular Ecology 21, 23302340.CrossRefGoogle ScholarPubMed
Silva-Júnior, ES, Farias, DSD, Bomfim, AC, Freire, ACB, Revoredo, RA, Rossi, S, Matushima, ER, Grisi-Filho, JHH, Silva, FJL and Gavilan, SA (2019) Stranded marine turtles in northeastern Brazil: incidence and spatial-temporal distribution of fibropapillomatosis. Chelonian Conservation and Biology 18, 249258.CrossRefGoogle Scholar
Stahelin, GD, Hofman, E, Qintana-Ascencio, PF, Reusche, M and Mansfeld, KL (2022) Incorporating distance metrics and temporal trends to refine mixed stock analysis. Scientific Reports 12, 20569.CrossRefGoogle ScholarPubMed
Varela, RG, Quílez, GZ and Harrison, E (2015) Report on the 2014 Green Turtle Program at Tortuguero, Costa Rica.Google Scholar
Velez-Zuazo, X, Ramos, WD, van Dam, RP, Diez, CE, Abreu-Grobois, A and Mcmillan, WO (2008) Dispersal, recruitment and migratory behaviour in a hawksbill sea turtle aggregation. Molecular Ecology 17, 839885.CrossRefGoogle Scholar
Wright, S (1949) The genetical structure of populations. Annals of Eugenics 15, 323354.CrossRefGoogle Scholar