Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T21:09:37.391Z Has data issue: false hasContentIssue false

Physiological factors causing natural variations in acoustic target strength of fish

Published online by Cambridge University Press:  11 May 2009

E. Ona
Affiliation:
Institute of Marine Research, PO Box 1870, N-5024 Bergen, Norway

Abstract

The swimbladder is recognized as responsible for a major part of the acoustic backscattering from fish. In most fishes it has the function of a buoyancy regulator but in others its main function is rather unclear. Based on methods for exact mapping of the swimbladder shape, observations of deviations from normal appearance and shape are discussed in relation to possible effects on target strength. Evidence for both periodic variations, as from uncompensated vertical migrations, and seasonal variations, caused by the fat cycle and gonad development, are presented.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J.M., Blaxter, J.H.S. & Denton E.J., 1976. The functional anatomy and development of the swimbladder-inner-ear lateral line system in herring and sprat. Journal of the Marine Biological Association of the United Kingdom, 56, 471486.CrossRefGoogle Scholar
Blaxter, J.H.S. & Batty, R.S., 1984. The herring swimbladder: loss and gain of gas. Journal of the Marine Biological Association of the United Kingdom, 64, 441459.CrossRefGoogle Scholar
Blaxter, J.H.S. & Tytler, P., 1978. Physiology and function of the swimbladder. Advances in Comparative Physiology and Biochemistry, 7, 311367.CrossRefGoogle ScholarPubMed
Brawn, V.M., 1962. Physical properties and hydrostatic function of the swimbladder of herring (Clupea harengus L.). Journal of the Fisheries Research Board of Canada, 19, 635656.CrossRefGoogle Scholar
Craig, R.E. & Forbes, St., 1969. Design of a sonar for fish counting. Fiskeridirektoratets Skrifter (ser. Havundersøkelser), 15, 210219.Google Scholar
Edwards, J.I. & Armstrong, F., 1981. Measurements of the target strength of live herring and mackerel. International Council for the Exploration of the Sea (CM Papers and Reports), B: 26, 11 pp.Google Scholar
Ehrenberg, J.E., 1972. A method for extracting the fish target strength distribution from acoustic echoes. In Ocean 72. Proceedings of the IEEE International Conference on Engineering in the Ocean Environment, 1972, pp. 6164. Newport, Rhode Island: IEEE.Google Scholar
Ehrenberg, J.E., 1979. A comparative analysis of in situ methods for directly measuring the acoustic target strength of fish. 7EEE Journal of Oceanic Engineering, 4, 141152.CrossRefGoogle Scholar
Fahlén, G., 1967. Morphological aspects on the hydrostatic function of the gas bladder in Clupea harengus L. Acta Universitatis Lundensis, no. 1, 49 pp.Google Scholar
Foote, K.G., 1980 a. Averaging of fish target strength functions. Journal of the Acoustical Society of America, 67, 504515.CrossRefGoogle Scholar
Foote, K.G., 1980 b. Importance of the swimbladder in acoustic scattering by fish: a comparison of gadoid and mackerel target strength. Journal of the Acoustical Society of America, 67, 20842089.CrossRefGoogle Scholar
Foote, K.G., 1985. Rather high-frequency sound scattering by swimbladdered fish. Journal of the Acoustical Society of America, 78, 688700.CrossRefGoogle Scholar
Foote, K.G., Aglen, A. & Nakken, O., 1986. Measurement of fish target strength with a split-beam echo sounder. Journal of the Acoustical Society of America, 80, 612621.CrossRefGoogle Scholar
Foote, K.G. & Ona, E., 1985. Swimbladder cross sections and acoustic target strengths of 13 pollack and 2 saithe. Fiskeridirektoratets Skrifter (ser. Havundersøkelser), 18, 157.Google Scholar
Hagman, N., 1921. Studien uber die Schwimmblase Einiger Gadiden und Macruriden. Akademische Abhandlung, Dr Philos., University of Lund, Sweden.Google Scholar
Halldorsson, O., 1983. On the behaviour of the Icelandic summer spawning herring (C. harengus L.) during echo surveying and depth dependence of acoustic target strength in situ. International Council for the Exploration of the Sea (CM Papers and Reports), H: 36, 35 pp.Google Scholar
Halldorsson, O. & Reynisson P., 1982. Target strength measurements of herring and capelin in situ at Iceland. FAO Fisheries Reports, no. 300, 7884.Google Scholar
Harden, Jones F.R., 1968. Fish Migration. London: Edward Arnold Ltd.Google Scholar
Harden, Jones F.R. & Scholes, P., 1985. Gas secretion and resorption in the swimbladder of the cod Gadus morhua. Journal of Comparative Physiology, 155, 319331.CrossRefGoogle Scholar
Holliday, D.V., 1977. Extracting bio-physical information from the acoustic signatures of marine organisms. In Ocean Sound Scattering Prediction (ed. N.R., Andersen and B.J., Zahuranec), pp. 619624. New York: Plenum Press.Google Scholar
Hunter, J.R. & Sanchez, C., 1976. Diel changes in swim bladder inflation of the larvae of the northern anchovy, Engraulis mordax. Fishery Bulletin. National Oceanic and Atmospheric Administration of the United States, 74, 847855.Google Scholar
Ingebriktsen, K. & Bergsjø, T., 1979. Methodological problems in whole-body autoradiography of rainbow trout. Ada Veterinaria Scandinavica, 20, 604606.CrossRefGoogle Scholar
Lassen, H. & Staehr, K.J., 1985. Target strength of Baltic herring and sprat measured in situ. International Council for the Exploration of the Sea (CM Papers and Reports), B: 41, 7 pp.Google Scholar
Losnegard, N., Bøe, B. & Larsen, T., 1979. Undersokelse av ekstraksjons-midler for bestemmelse av fett. Fiskeridirektoratet, Rapporter og Meldinger, 1979(1), 4pp. [In Norwegian.]Google Scholar
Løvik, A., Olsen, K. & Dalen, J., 1982. Acoustical remote sensing of fish size. Symposium on Fisheries Acoustics, Bergen, Norway, 2124 June 1982, paper no. 52, 24 pp (mimeo).Google Scholar
Magnuson, J.J., 1978. Locomotion by scombrid fishes: hydromechanics, morphology and behaviour. In Fish Physiology, vol. 3 (ed. W.S., Hoar and D.J., Randall), pp. 240308. New York: Academic Press.Google Scholar
Maier, H.N. & Scheampüring, L., 1923. Entwicklung der Schwimmblase und ihre Beziehungen zum statischen Organ und der Kloake bei Clupeiden, spez. beim Hering. Wissenshaftliche Meeresuntersuchungen der Kommission zur Wissenchaftlichen Untersuchung der Deutchen Meere (Abteilung Helgoland), 6, 123.Google Scholar
Midttun, L., 1984. Fish and other organisms as acoustic targets. Rapport et Proces-Verbaux des Reunions. Conseil International pour VExploration de la Mer, 184, 2533.Google Scholar
Molnár, G. & Tølg, I., 1960. Rontgenologic investigation of the duration of gastric digestion in the pike-perch (Lucioperca lucioperca L.). Acta Biologica Hungarica, 11, 103108.Google Scholar
Molnár, G. & Tølg, I., 1962. Relation between temperature and gastric digestion of largemouth bass (Micropterus salmonides Lacepede). Journal of the Fisheries Research Board of Canada, 19, 10051012.CrossRefGoogle Scholar
Nakken, O. & Olsen K., 1977. Target strength measurements of fish. Rapport et Proces-Verbaux des Reunions. Conseil International pour VExploration de la Mer, 170, 5269.Google Scholar
Olsen, K., 1979. Observed avoidance behaviour in herring in relation to passage of an echo survey vessel. International Council for the Exploration of the Sea (CM Papers and Reports), B: 18, 21pp.Google Scholar
Ona, E., 1982. Mapping of the Swimbladder Shape and Shape Stability for Theoretical Calculations of Acoustical Reflection from Fish. Thesis (Cand. real.), University of Bergen, Norway. [In Norwegian.]Google Scholar
Ona, E., 1984 a. In situ observations of swimbladder compression in herring. International Council for the Exploration of the Sea (CM Papers and Reports), B: 18, 24 pp.Google Scholar
Ona, E., 1984 b. Tilt angle measurements on herring. International Council for the Exploration of the Sea (CM Papers and Reports), B: 19, 13 pp.Google Scholar
Ona, E. & Hansen, K., 1986. In situ target strength observations on haddock. International Council for the Exploration of the Sea (CM Papers and Reports), B: 39, 14 pp.Google Scholar
Ross, L.G., 1979. The haemodynamics of gas resorption from the physoclist swimbladder: the structure and morphometrics of the oval in Pollachius virens (L.). Journal of Fish Biology, 14, 261266.CrossRefGoogle Scholar
Sand, O. & Hawkins, A.D., 1974. Measurements of swimbladder volume and pressure in cod. Norwegian journal of Zoology, 22, 3144.Google Scholar
Sundnes, G. & Bratland, P., 1972. Notes on the gas content and neutral buoyancy in physostome fish. Fiskeridirektoratets Skrifter (ser. Havundersokelser), 16, 8997.Google Scholar
Traynor, J. & Williamson, N.W., 1983. Target strength measurements of walleye pollock (Theragra chalcogramma) and a simulation study of the dual beam method. FAO Fisheries Reports, no. 300, 112124.Google Scholar
Tytler, P. & Blaxter, J.H.S., 1973. Adaptation by cod and saithe to pressure changes. Netherlands Journal of Sea Research, 7, 3145CrossRefGoogle Scholar