Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-04T10:20:31.116Z Has data issue: false hasContentIssue false

Phylogeny of the Hexactinellida: phylogenetic reconstruction of the subclass Hexasterophora based on morphological characters

Published online by Cambridge University Press:  09 May 2013

D. Henkel
Affiliation:
Christian-Albrechts-Universität zu Kiel, Leibnizstraße 3, 24118 Kiel, Germany
K. Borkenhagen
Affiliation:
Forschungs- und Technologiezentrum Westküste, Universität Kiel, Hafentörn 1, 25761 Büsum, Germany Forschungsinstitut und Naturmuseum Senckenberg, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
D. Janussen*
Affiliation:
Forschungsinstitut und Naturmuseum Senckenberg, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
*
Correspondence should be addressed to: D. Janussen, Forschungsinstitut und Naturmuseum Senckenberg, Senckenberganlage 25, 60325 Frankfurt am Main, Germany email: [email protected]

Abstract

Amongst the Hexactinellida, Hexasterophora is the most important taxon in terms of number of species as well as concerning the variability in morphological characters. In this study the first comprehensive analysis of phylogenetic relations between hexactinellid families and genera of the subclass Hexasterophora based on morphological features is presented. Therefore, 157 morphological characters of the Hexasterophora were compiled into a matrix by presence/absence data. The resulting phylogenetic trees are compared with conclusions based on molecular data and classical systematics. So far, we find the main hexasterophoran taxa (Hexactinosida, Rossellidae and Euplectellidae) well established as monophyletic and in rather good correspondence with classical systematics and molecular results. Our phylogenetic trees largely support the systematic classification proposed by Schulze (1886) and Mehl (2002). However, some families (e.g. Euretidae) are not corroborated. For others (Euplectellidae), our cladistics approach is at odds with the system proposed by Tabachnick (2002a). Morphological phylogeny becomes problematic for those taxa, in which many of the diagnostic characters are either symplesiomorphic, or multiple homoplastic. Our results indicated the need for revision of the classification features used.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barthel, D. (1992) Do hexactinellids structure Antarctic sponge associations? Ophelia 36, 111118.CrossRefGoogle Scholar
Barthel, D. (1995) Tissue composition of Antarctic sponges: not much meat on the bones. Marine Ecology Progress Series 123, 149153.CrossRefGoogle Scholar
Barthel, D. (1997) Fish eggs and pentacrinoids in Weddell Sea hexactinellids: further examples for the structuring role of sponges in Antarctic benthic ecosystems. Polar Biology 17, 9194.CrossRefGoogle Scholar
Cattaneo-Vietti, R., Bavestrello, G., Cerrano, C., Gaino, E., Mazzella, L., Pansini, M. and Sarà, M. (1999) The role of sponges in the Terra Nova Bay ecosystem. In Faranda, F., Guglielmo, L. and Ianora, A. (eds) Ross Sea ecology Italiantartide Expeditions (1987–1995). Berlin, Heidelberg, New York: Springer, pp. 539549.Google Scholar
Dohrmann, M., Janussen, D., Reitner, J., Collins, A.G. and Wörheide, G. (2008) Phylogeny and evolution of glass sponges (Porifera, Hexactinellida). Systematic Biology 57, 388405.CrossRefGoogle ScholarPubMed
Dohrmann, M., Collins, A.G. and Wörheide, G. (2009) New insights into the phylogeny of glass sponges (Porifera, Hexactinellida): monophyly of Lyssacinosida and Euplectellinae, and the phylogenetic position of Euretidae. Molecular Phylogenetics and Evolution 52, 257262.CrossRefGoogle ScholarPubMed
Dohrmann, M., Göcke, C., Janussen, D., Reitner, J., Lüter, C. and Wörheide, G. (2011) Systematics and spicule evolution in dictyonal sponges (Hexactinellida: Sceptrulophora) with description of two new species. Zoological Journal of the Linnean Society 163, 10031025.CrossRefGoogle Scholar
Dohrmann, M., Göcke, C., Reed, J. and Janussen, D. (2012a) Integrative taxonomy justifies a new genus, Nodastrella gen. nov., for North Atlantic ‘Rossella’ species (Porifera: Hexactinellida: Rossellidae). Zootaxa 3383, 113.CrossRefGoogle Scholar
Dohrmann, M., Haen, K.M., Lavrov, D.V. and Wörheide, G. (2012b) Molecular phylogeny of glass sponges (Porifera, Hexactinellida): increased taxon sampling and inclusion of the mitochondrial protein-coding gene, cytochrome oxidase subunit I. Hydrobiologia 687, 1120.CrossRefGoogle Scholar
Dohrmann, M., Vargas, S., Janussen, D., Collins, A.G. and Wörheide, G. (2013) Molecular paleobiology of early-branching animals: integrating DNA and fossils elucidates the evolutionary history of hexactinellid sponges. Paleobiology 39, 95108.CrossRefGoogle Scholar
Gatti, S. (2002) The role of sponges in high-Antarctic carbon and silicon cycling—a modeling approach. Berichte zur Polar- und Meeresforschung 434, 1102.Google Scholar
Hooper, J.N.A. and van Soest, R.W.M. (2002) Systema Porifera: a guide to the classification of Sponges. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Ijima, I. (1927) The Hexactinellida of the Siboga Expedition. In Weber, M. (ed.) Siboga-Expeditie. Uitkomsten op zoologisch, botanisch, oceanographisch en geologisch gebied verzameld in Nederlandsch Oost-lndië 1899–1900 aan boord H.M. Siboga onder commando van Luitenant ter zee 1e kl. G.F. Tydemann. 106 (Monographie VI). Lieden: E.J. Brill, pp. i–viii, 1–383, pls I–XXVI.Google Scholar
Konecki, J.T. and Targett, T.E. (1989) Eggs and larvae of Nototheniops larseni from the spongocoel of a hexactinellid sponge near Hugo Island, Antarctic Peninsula. Polar Biology, 10197101198.Google Scholar
Kunzmann, K. (1992) Die mit ausgewählten Schwammen (Hexactinellida und Demospongiae) aus dem Weddellmeer, Antarktis, vergesellschaftete Fauna. PhD thesis. University of Kiel, Kiel, Germany.Google Scholar
Leys, S.P., Mackie, G.O. and Reiswig, H.M. (2007) The biology of glass sponges. Advances in Marine Biology 52, 1145.CrossRefGoogle ScholarPubMed
Mehl, D. (1992) Die Entwicklung der Hexactinellida seit dem Mesozoikum. Paläobiologie, Phylogenie und Evolutionsökologie. Berliner geowissenschaftliche Abhandlungen Reihe E (Paläobiologie) 2, 1164.Google Scholar
Mehl-Janussen, D. (1999) Die frühe Evolution der Porifera. Phylogenie und Evolutionsökologie der Poriferen im Paläozoikum mit Schwerpunkt der desmentragenden Demospongiae (‘Lithistide'). Münchner Geowissenschaftliche Abhandlungen Reihe A (Geologie und Palaontologie) 37, 172.Google Scholar
Page, R.D.M. (2001) Nexus Data Editor for Windows (NDE), version 0.5.0. Program and documentation. Available at: http://taxonomy.zoology.gla.ac.uk/rod/NDE/nde.htmlGoogle Scholar
Reiswig, H.M. (2002a) Order Hexactinosida Schrammen, 1903. In Hooper, J.N.A. and van Soest, R.W.M. (eds) Systema Porifera: a guide to the classification of sponges. New York: Plenum Press, 12671360.Google Scholar
Reiswig, H.M. (2002b) Order Amphidiscosida Schrammen, 1903. In Hooper, J.N.A. and van Soest, R.W.M. (eds) Systema Porifera: a guide to the classification of sponges. New York: Plenum Press, p. 1231.Google Scholar
Reiswig, H.M. (2004) Hexactinellida after 132 years of study—what's new? Bolletino di Musei e degli Istituti Biologici della Università di Genova, 68, 7184.Google Scholar
Reiswig, H.M. (2006) Classification and phylogeny of Hexactinellida (Porifera). Canadian Journal of Zoology 84, 195204.CrossRefGoogle Scholar
Reitner, J. and Mehl, D. (1995) Early Paleozoic diversification of sponges: new data and evidences. Geologisch-Paläontologische Mitteilungen Innsbruck 20, 335347.Google Scholar
Schrammen, A. (1903) Zur Systematik der Kieselspongien. Mitteilungen aus dem Roemer-Museum Hildesheim 19, 121.Google Scholar
Schulze, F.E. (1886a) Über den Bau und das System der Hexactinelliden. Physikalische Abhandlungen Königlich Preußische Akademie der Wissenschaften 1, 197.Google Scholar
Schulze, F.E. (1886b) The Hexactinellida. In Tizard, H.T., Moseley, H.M., Buchanan, J.Y. and Murray, J. (eds) Report on the Scientific Results of the Voyage of HMS Challenger, 1873–1876, Narrative, 1(1). London: HMSO, pp. 437–451.Google Scholar
Schulze, F.E. (1899) Amerikanische Hexactinelliden, nach dem Materiale der Albatross-Expedition. Jena: Fischer.CrossRefGoogle Scholar
Swofford, D.L. (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland, MA: Sinauer Associates.Google Scholar
Tabachnick, K.R. (2002a) Family Euplectellidae Gray, 1867. In Hooper, J.N.A. and van Soest, R.W.M. (eds) Systema Porifera: a guide to the classification of sponges. New York: Plenum Press, pp. 13881434.CrossRefGoogle Scholar
Tabachnick, K.R. (2002b) Family Rossellidae Schulze, 1885. In Hooper, J.N.A. and van Soest, R.W.M. (eds) Systema Porifera: a guide to the classification of sponges. New York: Plenum Press, pp. 14411505.CrossRefGoogle Scholar
Tabachnick, K.R. and Menshenina, L.L. (1999) An approach to the phylogenetic reconstruction of Amphidiscophora (Porifera: Hexactinellida). Memoirs of the Queensland Museum 44, 607615.Google Scholar
Van Soest, R.W.M., Boury-Esnault, N., Hooper, J.N.A., Rützler, K, de Voogd, N.J., Alvarez de Glasby, B., Hajdu, E., Pisera, A.B., Manconi, R., Schoenberg, C., Janussen, D., Tabachnick, K.R., Klautau, M., Picton, B., Kelly, M., Vacelet, J., Dohrmann, M. and Cristina Díaz, M. (2013) World Porifera database. Available at: http://www.marinespecies.org/porifera on 2013-01-11Google Scholar