Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-18T14:11:01.444Z Has data issue: false hasContentIssue false

Patterns of a novel association between the scyphomedusa Chrysaora plocamia and the parasitic anemone Peachia chilensis

Published online by Cambridge University Press:  30 August 2012

Jose M. Riascos*
Affiliation:
Universidad de Antofagasta, Instituto de Investigaciones Oceanológicas, Climate Change Ecology Research Group, CENSOR Laboratory, Avenida Universidad de Antofagasta 02800, Antofagasta, Chile
Viviana Villegas
Affiliation:
Universidad de Antofagasta, Instituto de Investigaciones Oceanológicas, Climate Change Ecology Research Group, CENSOR Laboratory, Avenida Universidad de Antofagasta 02800, Antofagasta, Chile
Ignacio Cáceres
Affiliation:
Universidad de Antofagasta, Instituto de Investigaciones Oceanológicas, Climate Change Ecology Research Group, CENSOR Laboratory, Avenida Universidad de Antofagasta 02800, Antofagasta, Chile
Jorge E. Gonzalez
Affiliation:
Programa de Doctorado en Ciencias Aplicadas, mención sistemas marinos costeros, Universidad de Antofagasta
Aldo S. Pacheco
Affiliation:
Universidad de Antofagasta, Instituto de Investigaciones Oceanológicas, Climate Change Ecology Research Group, CENSOR Laboratory, Avenida Universidad de Antofagasta 02800, Antofagasta, Chile
*
Correspondence should be addressed to: J.M. Riascos, Universidad de Antofagasta, Instituto de Investigaciones Oceanológicas, Climate Change Ecology Research Group, CENSOR Laboratory, Avenida Universidad de Antofagasta 02800, Antofagasta, Chile email: [email protected]

Abstract

Jellyfish display strong population variability. Competitive interactions between fish and jellyfish have been depicted as a major mechanism controlling this variability. Biological associations involving jellyfish are, however, more diverse than predation–prey interactions and remain poorly understood. Parasitic associations in particular may have relevant effects on jellyfish host populations. We studied basic patterns (temporal patterns of parasite intensity–biomass and the distribution pattern of parasites among hosts) of the association between the parasitic anemone Peachia chilensis and its scyphozoan host, Chrysaora plocamia. The mean number of parasites per host (MI) was high (average = 465) and showed significant differences during the pelagic life phase of the medusa. The mean biomass of parasites per host was also significantly different among months but showed a different temporal pattern to that of MI, which may reflect recruitment pulses of parasitic larvae. The mean biomass of P. chilensis per host averaged 56.3 mg ash-free dry mass, which represents a trophic flow of energy probably linking pelagic and benthic food webs. The distribution of parasites among hosts was best fitted to the negative binomial distribution model, as typical for host–parasite systems. We concluded that the parasite-induced host mortality and reduction of fecundity, represented by parasitic castration, is restricted to a few hosts and is therefore under the expected levels that characterize the dynamic equilibrium of host–parasite systems.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arai, M.N. (2005) Predation on pelagic coelenterates: a review. Journal of the Marine Biological Association of the United Kingdom 85, 523536.CrossRefGoogle Scholar
Badham, C. (1917) On a larval actinian parasitic in a rhizostome. Quarterly Journal of Microscopical Science 62, 221229.Google Scholar
Baudoin, M. (1975) Host castration as a parasitic strategy. Evolution 29, 335352.CrossRefGoogle ScholarPubMed
Buecher, E., Sparks, C., Brierly, A., Boyer, H. and Gibbons, M. (2001) Biometry and size distribution of Chrysaora hysoscella (Cnidaria, Sciphozoa) and Aequorea aequorea (Cnidaria, Hydrozoa) off Namibia with some notes on their parasite Hyperia medusarum. Journal of Plankton Research 23, 10731080.CrossRefGoogle Scholar
Bumann, D. and Puls, G. (1996) Infestation with larvae of the sea anemone Edwardsia lineata affects nutrition and growth of the ctenophore Mnemiopsis leidyi. Parasitology 113, 123128.CrossRefGoogle Scholar
Bush, A.O., Lafferty, K.D., Lotz, J.M. and Shostak, A.W. (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Bush, A.O., Fernández, J.C., Esch, G.W. and Seed, J.R. (2001) Parasitism: the diversity and ecology of animal parasites. Cambridge: Cambridge University Press.Google Scholar
Condon, R.H., Graham, W.M., Duarte, C.M., Pitt, K.A., Lucas, C.H., Haddock, S.H.D., Sutherland, K.R., Robinson, K.L., Dawson, M.N., Decker, M.B., Mills, C.E., Purcell, J.E., Malej, A., Mianzan, H., Uye, S., Gelcich, S. and Madin, L.P. (2012) Questioning the rise of gelatinous zooplankton in the world's oceans. BioScience 62, 160169.CrossRefGoogle Scholar
Drazen, J.C. and Robison, B.H. (2004) Direct observations of the association between a deep-sea fish and a giant scyphomedusa. Marine and Freshwater Behaviour and Physiology 37, 209214.CrossRefGoogle Scholar
Gasca, R. and Haddock, S.H.D. (2004) Associations between gelatinous zooplankton and hyperiid amphipods (Crustacea: Peracarida) in the Gulf of California. Hydrobiologia 530, 529535.Google Scholar
Lafferty, K.D. (1993) Effects of parasitic castration on growth, reproduction and population dynamics of the marine snail Cerithidea californica. Marine Ecology Progress Series 96, 229237.CrossRefGoogle Scholar
Lafferty, K.D., Allesina, S., Arim, M., Briggs, C.J., De Leo, G., Dobson, A.P., Dunne, J.A., Johnson, P.T., Kuris, A.M., Marcogliese, D.J., Martínez, N.D., Memmott, J., Marquet, P.A., McLaughlin, J.P., Mordecai, E.A., Pascual, M., Poulin, R. and Thieltges, D.W. (2008) Parasites in food webs: the ultimate missing links. Ecology Letters 11, 533546.CrossRefGoogle ScholarPubMed
Mansueti, R. (1963) Symbiotic behaviour between small fishes and jellyfishes, with new data on that between the stromateid, Peprilus alepidotus, and the scyphomedusae, Chrysaora quinquecirrha. Copeia 1963, 4080.CrossRefGoogle Scholar
McMurich, J.P. (1913) On two new actinians from the coast of British Columbia. Proceedings of the Zoological Society of London 1913, 963972.CrossRefGoogle Scholar
Mianzan, H., Pájaro, M., Alvarez Colombo, G. and Madirolas, A. (2001) Feeding on survival-food: gelatinous plankton as a source of food for anchovies. Hydrobiologia 451, 4553.CrossRefGoogle Scholar
Mills, C.E. (1993) Natural mortality in the NE Pacific coastal hydromedusae: grazing predation, wound healing and senescence. Bulletin of Marine Science 53, 194203.Google Scholar
Morandini, A.C. and Marques, A.C. (2010) Revision of the genus Chrysaora Péron and Lesueur, 1810 (Cnidaria: Scyphozoa). Zootaxa 2464, 197.CrossRefGoogle Scholar
Pauly, D., Graham, W., Libralato, S., Morissette, L. and Palomares, M.L.D. (2009) Jellyfish in ecosystems, online databases and ecosystem models. Hydrobiologia 616, 6785.CrossRefGoogle Scholar
Purcell, J.E. (2012) Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Annual Review of Marine Science 4, 209235.CrossRefGoogle ScholarPubMed
Purcell, J.E. and Arai, M.N. (2001) Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451, 2744.CrossRefGoogle Scholar
Purcell, J.E., Uye, S. and Lo, W.T. (2007) Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Marine Ecology Progress Series 350, 153174.CrossRefGoogle Scholar
Raskoff, K.A. and Robison, B.H. (2005) A novel mutualistic relationship between a doliolid and a cnidarian, Bythotiara dolioeques sp. nov. Journal of the Marine Biological Association of the United Kingdom 85, 583593.CrossRefGoogle Scholar
Spaulding, J.G. (1972) The life cycle of Peachia quinquecapitata, an anemone parasitic on medusae during its larval development. Biological Bulletin. Marine Biological Laboratory, Woods Hole 143, 440453.CrossRefGoogle Scholar
Thiel, M.E. (1976) Wirbellose meerestiere als parasiten, kommensalen oder symbionten in oder an Scyphomedusen. Helgoland Marine Research 28, 417446.Google Scholar
Wilson, K. and Grenfell, B.T. (1997) Generalized linear modeling for parasitologists. Parasitology Today 13, 3337.CrossRefGoogle ScholarPubMed
Zeballos, J., Arones, I., Cabrera, A., Galindo, O., Lorenzo, A., Quiñones, J., Zavala, J., Flores, D. and Carbajo, L. (2008) Informe de las actividades desarrolladas durante el año 2007. Instituto del Mar del Perú, Laboratorio Costero de Pisco, Perú, 17 pp.Google Scholar