Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-23T21:10:01.043Z Has data issue: false hasContentIssue false

On The Fine Structure of Lateral-Line Canal Organs of the Herring (Clupea Harengus)

Published online by Cambridge University Press:  11 May 2009

J. Mørup Jørgensen
Affiliation:
Zoological Laboratory, University of Aarhus, DK-8000 Aarhus C, Denmark

Extract

The lateral-line system of water-living lower vertebrates is provided with mechanoreceptors enabling the animals to detect water displacements, either caused by moving objects such as prey, predators or neighbours in a school or by deformations of pressure waves from the swimming animal caused by other objects. Cyclostomes, some fish and water–living amphibians have their lateral-line organs situated superficially in the epidermis as free neuromasts, while most fish besides these neuromasts possess a canal system in the dermis. Ordinarily the lateral line canal system consists of a few canals on the sides of the head and a trunk canal. In herring, however, the canal system is confined to the head and opercule. It forms a very richly branched system with numerous pores which connect the canal fluid with the surrounding sea water.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Best, A. C. B. & Gray, J. A. B., 1982. Nerve fibre and receptor counts in the sprat utriculus and lateral line. Journal of the Marine Biological Association of the United Kingdom, 62, 201213.CrossRefGoogle Scholar
Denton, E. J. & Gray, J. A. B., 1982. The rigidity offish and patterns of lateral line stimulation. Nature, London, 297, 679681.CrossRefGoogle Scholar
Denton, E. J. & Gray, J. [A. B.], 1983. Mechanical factors in the excitation of clupeid lateral lines. Proceedings of the Royal Society (B), 218, 126.Google ScholarPubMed
Denton, E. J., Gray, J. A. B. & Blaxter, J. H. S., 1979. The mechanics of the clupeid acousticolateralis system: frequency responses. Journal of the Marine Biological Association of the United Kingdom, 59, 2747.CrossRefGoogle Scholar
Ekström Von Lubitz, D. K. J., 1981. Ultrastructure of the lateral-line sense organs of the ratfish, Chimaera monstrosa. Cell and Tissue Research, 215, 651665.CrossRefGoogle ScholarPubMed
Flock, Å., 1965. Electron microscopic and electrophysiological studies on the lateral line canal organ. Acta oto-laryngologica, supplementum 199, 90 pp.Google Scholar
Gray, E. G., 1975. Presynaptic microtubules and their association with synaptic vesicles. Proceedings of the Royal Society (B), 190, 369372.Google ScholarPubMed
Gray, E. G., 1976. Microtubules in synapses of the retina. Journal of Neurocytology, 6, 505518.Google Scholar
Gray, E. G., 1977. Presynaptic microtubules, agranular reticulum and synaptic vesicles. In Synapses (ed. Cottrell, G. A. and Usherwood, P. N. R.), pp. 619. Glasgow: Blackie.Google Scholar
Gray, E. G., Westrum, L. E., Burgoyne, R. D. & Barrow, J., 1982. Synaptic organisation and neuron microtubule distribution. Cell and Tissue Research, 226, 579588.CrossRefGoogle ScholarPubMed
Gray, J. [A. B.], 1984. Interaction of sound pressure and particle acceleration in the excitation of the lateral-line neuromasts of sprats. Proceedings of the Royal Society (B), 220, 299325.Google Scholar
Gray, J. A. B. & Denton, E. J., 1979. The mechanics of the clupeid acoustico-lateralis system: low-frequency measurements. Journal of the Marine Biological Association of the United Kingdom, 59, 1126.CrossRefGoogle Scholar
Hama, K., 1965. Some observations on the fine structure of the lateral line organ of the Japanese sea eel Lyncozymba nystromi. Journal of Cell Biology, 24, 193210.CrossRefGoogle ScholarPubMed
Jakubowski, M., 1967. A method for the manifestation of lateral-line canals and their neuromasts in fishes. Copeia, 1967, 234235.CrossRefGoogle Scholar
Jørgensen, J. M., 1982a. Microtubules and laminated structures in inner ear hair cells. Acta oto-laryngologica, 94, 241248.CrossRefGoogle Scholar
Jørgensen, J. M., 1982b. Fine structure of the ampullary organs of the bichir Polypterus senegalus Cuvier, 1829 (Pisces, Brachiopterygii) with some notes on the phytogenetic development of electroreceptors. Acta zoologica, 63, 211217.CrossRefGoogle Scholar
Kanaseki, T. & Kadota, K., 1969. The ‘vesicle in a basket’. A morphological study of the coated vesicle isolated from the nerve endings of the guinea pig brain, with special reference to the mechanism of membrane movements. Journal of Cell Biology, 42, 202220.CrossRefGoogle Scholar
M¨nz, H., 1979. Morphology and innervation of the lateral line system in Sarotherodon niloticus (L.) (Cichidae, Teleostei). Zoomorphologie, 93, 7386.CrossRefGoogle Scholar
Wegner, N., 1982. A qualitative and quantitative study of a sensory epithelium in the inner ear of a fish (Colisa labiosa; Anabantidae). Acta zoologica, 63, 133146.CrossRefGoogle Scholar
Wohlfarht, T., 1937. Anatomische Untersuchungen über die Seitenkanäle der Sardine (Clupea pilchardus Walb.). Zeitschrift für Morphologie und Ökologie der Tiere, 33, 381411.CrossRefGoogle Scholar
Yamada, Y. & Hama, K., 1972. Fine structure of the lateral-line organ of the common eel, Anguilla japonica. Zeitschrift für Zellforschung und mikroskopische Anatomie, 124, 454464.CrossRefGoogle ScholarPubMed