Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T07:21:53.655Z Has data issue: false hasContentIssue false

New host–parasite records of siphonostomatoid copepods infesting elasmobranch fishes in Tunisian waters

Published online by Cambridge University Press:  19 November 2018

Feriel Youssef*
Affiliation:
Research Unit, Biologie Intégrative et Ecologie Evolutive et Fonctionnelle des milieux aquatiques. Faculté des Sciences Tunis, Université Al Manar, Tunis, Tunisia
Sabiha Tlig Zouari
Affiliation:
Research Unit, Biologie Intégrative et Ecologie Evolutive et Fonctionnelle des milieux aquatiques. Faculté des Sciences Tunis, Université Al Manar, Tunis, Tunisia
Bouchra Benmansour
Affiliation:
Research Unit, Biologie Intégrative et Ecologie Evolutive et Fonctionnelle des milieux aquatiques. Faculté des Sciences Tunis, Université Al Manar, Tunis, Tunisia
*
Author for correspondence: Feriel Youssef, E-mail: [email protected]

Abstract

Between 2013 and 2015, 2092 chondrichthyan fish belonging to eight species were collected along the Tunisian coast and examined for parasitic copepods. Eleven different species of copepods representing five families, Caligidae, Eudactylinidae, Kroyeriidae, Lernaeopodidae and Pandaridae, were collected. Three of these species are reported for the first time in Tunisia (Pseudocharopinus malleus, Perissopus dentatus and Nesippus orientalis) and one new species of Kroyeria was found. In addition, we identified a number of new host records including: the presence of Eudactylinella alba on Bathytoshia centroura, Dasyatis pastinaca, Mustelus mustelus and Scyliorhinus canicula. This is the first record of Nemesis sp. on B. centroura in Tunisia. We report here for the first time the presence of Pseudocharopinus bicaudatus and Pseudocharopinus concavus on Bathytoshia centroura and Lernaeopoda galei on Raja clavata.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benkirane, O, Coste, F and Raibaut, A (1999) On the morphological variability of the attachment organ of Lernaeopodidae (Copepoda: Siphonostomatoida). Folia Parasitologica 46, 6775.Google Scholar
Benmansour, B. (2001) Biodiversité et bioécologie des copépodes parasites des poissons téléostéens. Thèse de doctorat. Université de Tunis El Manar Tunis II, Tunisia.Google Scholar
Benz, GW (1994) Evolutionary biology of Siphonostomatoida (Copepoda) parasitic on vertebrates. PhD thesis. University of British Columbia, Vancouver, Canada.Google Scholar
Benz, GW, Kabata, Z and Bullard, SA (2000) Margolisius abditus n. gen., n. sp. (Copepoda: Lernaeopodidae) from gill lamellae of a remora (Remora remora) collected in the Gulf of California. Journal of Parasitology 86, 241244.Google Scholar
Bernot, JP and Boxshall, GA (2017) A new species of Pseudopandarus kirtisinghe, 1950 (Copepoda: Siphonostomatoida: Pandaridae) from sharks of the genus Squalus L. in New Caledonian waters. Systematic Parasitology 94, 275291.Google Scholar
Boxshall, GA and Halsey, SH (2004) An Introduction to Copepod Diversity. London: The Ray Society.Google Scholar
Bradaï, MN (2000) Diversité du peuplement ichtyque et contribution à la connaissance des sparidés du Golfe de Gabès. PhD thesis, University of Sfax, Tunisia.Google Scholar
Bradaï, MN, Saiidi, B and Enajjar, S (2012) Elasmobranchs of the Mediterranean and Black Sea: Status, Ecology and Biology. Bibliographic Analysis. Studies and Reviews. General Fisheries Commission for the Mediterranean. No. 91. FAO: Rome, pp. 1–103.Google Scholar
Bush, AO, Lafferty, KD, Lotz, JM, Shostak, AW (1997) Parasitology meets ecology on its own terms: Margolis et al., revisited. Journal of Parasitology 83, 575583.Google Scholar
Combes, C. (1995). Interaction Durables: ecologie et Évolution du Parasitisme. Paris: Masson, 524 pp.Google Scholar
Compagno, LJV (1984) FAO Species Catalogue. Vol. 4: Sharks of the World, Part 2 – Carcharhiniformes. FAO Fisheries Synopsis 125, Vol. 4. FAO: Rome, pp. 251633.Google Scholar
Corrigan, S and Beheregaray, LB (2009) A recent shark radiation: molecular phylogeny, biogeography and speciation of Wobbegong sharks (family: Orectolobidae). Molecular Phylogenetics and Evolution 52, 205216.Google Scholar
Cressey, RF (1967) Revision of the family Pandaridae (Copepoda, Caligoida). Proceedings of the United States National Museum 121, 1133.Google Scholar
Cressey, RF (1970) Copepods parasitic on sharks from the west coast of Florida. Smithsonian Contributions to Zoology 38, 130.Google Scholar
Deets, GB (1994) Copepod-Chondrichthyan coevolution: A cladistic consideration. PhD thesis. University of British Columbia. Canada.Google Scholar
Dippenaar, SM (2004) Reported siphonostomatoid copepods parasitic on marine fishes of southern Africa. Crustaceana 77, 12811328.Google Scholar
Dippenaar, SM (2016) Biodiversity and studies of marine symbiotic siphonostomatoids off South Africa. African Journal of Marine Science 38, 15.Google Scholar
Dippenaar, SM and Jordaan, BP (2007) New host and geographical records of siphonostomatoid copepods associated with elasmobranchs off the KwaZulu-Natal coast, South Africa. Onderstepoort Journal of Veterinary Research 74, 169175.Google Scholar
Dippenaar, SM and Jordaan, BP (2012) Notes on the morphology and ecology of the adult females of Nesippus species (Siphonostomatoida: Pandaridae) with a key for identification. Zootaxa 3170, 1830.Google Scholar
Dippenaar, SM and Molele, RA (2015) Siphonostomatoid copepods infecting Squalus acutipinnis Regan, 1908 off South Africa. African Journal of Marine Science 37, 605608.Google Scholar
Essafi, K (1975) Contribution à l’étude des copépodes parasites des sélaciens de Tunisie. Thèse de Doctorat. Université Tunis El Manar. Tunis II. Tunisia.Google Scholar
Fischer, W, Bauchot, ML and Schneider, M (1987) Fiches FAO d'identification des espèces pour les besoins de la pêche. (Révision 1). Méditerranée et Mer Noire. Zone de Pêche 37. Rome: FAO, 761–1529.Google Scholar
Froese, R and Pauly, D (eds) (2018) FishBase. http://www.fishbase.org.Google Scholar
Gaevskaya, AV (2012) Parasites and diseases of fishes in the Black Sea and the Sea of Azov: I. – Sevastopol. EKOSI – Gidrofizika.Google Scholar
Henderson, AC, Flannery, K and Dunne, J (2002) An investigation into the metazoan parasites of the spiny dog fish (Squalus acanthias L.), off the west coast of Ireland. Journal of Natural History 36, 17471760.Google Scholar
Henderson, AC, Flannery, K and Dunne, J (2003) Biological observations on shark species taken in commercial fisheries to the west of Ireland. Biology and Environment: Proceedings of the Royal Irish Academy 103B, 17.Google Scholar
Henderson, AC, Reeve, AJ and Tang, D (2013) Parasitic copepods from some northern Indian Ocean elasmobranchs. Marine Biodiversity Records 6, 13.Google Scholar
Izawa, K (2011) Dangoka japonica nov. gen. nov. sp. and Eudactylinella alba Wilson, 1932 (Copepoda, Siphonostomatoida, Eudactylinidae) infesting Japanese elasmobranchs. Crustaceana 84, 12691277.Google Scholar
Kabata, Z (1964) Revision of the genus Charopinus Kroyer 1863 (Copepoda: Lernaeopodidae). Videnskabelige Meddelelser Dansk Naturhistorisk Forening 127, 28112.Google Scholar
Kabata, Z (1979) Parasitic Copepods of British Fishes. London: The Ray Society, i–xii, 1–468.Google Scholar
Kabata, Z (1981) Copepoda (Crustacea) parasitic on fishes: problems and perspectives. Advances in Parasitology 19, 171.Google Scholar
Kamiya, T, O'Dwyer, K, Nakagawa, S and Poulin, R (2014) What determines species richness of parasitic organisms? A meta-analysis across animal, plant and fungal hosts. Biological Reviews 89, 123134.Google Scholar
Karaytug, S, Sak, S and Alper, A (2004) Parasitic copepod Lernaeopoda galei Kroyer, 1837 (Copepoda: Siphonostomatoida): a first record from Turkish seas. Turkish Journal of Zoology 28, 123128.Google Scholar
Khodami, S, McArthur, JV, Blanco-Bercial, L and Martinez Arbizu, P (2017) Molecular phylogeny and revision of copepod orders (Crustacea: Copepoda). Scientific Reports 7, 9164.Google Scholar
Margolis, L, Esche, GW, Holmes, JC, Kuris, AM and Schrad, GA (1982) The use of ecological terms in parasitology (report of an ad hoc committee of the American Society of Parasitologists). Journal of Parasitology 68, 131133.Google Scholar
Morand, S (2000) Wormy world: comparative tests of theoretical hypotheses on parasite species richness. In Poulin, R, Morand, S and Skorping, A (eds), Evolutionary Biology of Host–Parasite Relationships. Amsterdam: Elsevier, pp. 6379.Google Scholar
Poulin, R, Krasnov, BR and Mouillot, D (2011) Host specificity in phylogenetic and geographic space. Trends in Parasitology 27, 355361.Google Scholar
Raibaut, A, Combes, C and Benoit, F (1998) Analysis of the parasitic copepod species richness among Mediterranean fish. Journal of Marine Systems 15, 185206.Google Scholar
Raup, D and Sepkoski, J (1982) Mass extinctions in the marine fossil record. Science 215, 15011503.Google Scholar
Rohde, K (1979) A critical evaluation of intrinsic and extrinsic factors responsible for niche restriction in parasites. American Naturalist 114, 648671.Google Scholar
Séret, B (2006) Guide d'identification des principales espèces de requins et de raies de l'Atlantique oriental tropical, à l'usage des enquêteurs et biologistes des pêches. FIBA, PRCM & IUCN.Google Scholar
Smale, MJ and Compagno, LJV (1997) Life history and diet of two southern African smoothhound sharks, Mustelus mustelus (Linnaeus, 1758) and Mustelus palumbes Smith, 1957 (Pisces: Triakidae). South African Journal of Marine Science 18, 229248.Google Scholar
Walter, TC and Boxshall, G (2018) World of Copepods Database. Available via World Register of Marine Species. http://www.marinespecies.org/aphia.php?p=taxdetails&id=135531.Google Scholar
Youssef, F, Benmansour, B, Ben Hassine, OK and Zouari-Tlig, S (2016) Some parasitic copepods of selected teleost and chondrichthyan fishes from the Tunisian Gulfs. African Journal of Microbiology Research 10, 14671476.Google Scholar