Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T22:10:20.385Z Has data issue: false hasContentIssue false

The mushroom coral as a habitat

Published online by Cambridge University Press:  23 September 2011

Bert W. Hoeksema*
Affiliation:
Department of Marine Zoology, Netherlands Centre for Biodiversity Naturalis, PO Box 9517, 2300 RA Leiden, The Netherlands
Sancia E.T. Van der Meij
Affiliation:
Department of Marine Zoology, Netherlands Centre for Biodiversity Naturalis, PO Box 9517, 2300 RA Leiden, The Netherlands
Charles H.J.M. Fransen
Affiliation:
Department of Marine Zoology, Netherlands Centre for Biodiversity Naturalis, PO Box 9517, 2300 RA Leiden, The Netherlands
*
Correspondence should be addressed to: B.W. Hoeksema, Department of Marine Zoology, Netherlands Centre for Biodiversity Naturalis, PO Box 9517, 2300 RA Leiden, The Netherlands email: [email protected]

Abstract

The evolution of symbiotic relationships involving reef corals has had much impact on tropical marine biodiversity. Because of their endosymbiotic algae (zooxanthellae) corals can grow fast in tropical shallow seas where they form reefs that supply food, substrate and shelter for other organisms. Many coral symbionts are host-specific, depending on particular coral species for their existence. Some of these animals have become popular objects for underwater photographers and aquarists, whereas others are hardly noticed or considered pests. Loss of a single coral host species also leads to the disappearance of some of its associated fauna. In the present study we show which mushroom corals (Scleractinia: Fungiidae) are known to act as hosts for other organisms, such as acoel flatworms, copepods, barnacles, gall crabs, pontoniine shrimps, mytilid bivalves, epitoniid snails, coralliophilid snails, fish and certain types of zooxanthellae. Several of these associated organisms appear to be host-specific whereas other species are generalists and not even necessarily restricted to fungiid hosts. Heliofungia actiniformis is one of the most hospitable coral species known with a recorded associated fauna consisting of at least 23 species. The availability of a phylogeny reconstruction of the Fungiidae enables comparisons of closely related species of mushroom corals regarding their associated fauna. Application of a phylogenetic ecological analysis indicates that the presence or absence of associated organisms is evolutionarily derived or habitat-induced. Some associations appear to be restricted to certain evolutionary lineages within the Fungiidae, whereas the absence of associated species may be determined by ecomorphological traits of the host corals, such as coral dimensions (coral diameter and thickness) and polyp shape (tentacle size).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, D.T. (1992) Structure, function and phylogeny of coral-inhabiting barnacles (Cirripedia, Balanoidea). Zoological Journal of the Linnean Society 106, 277339.CrossRefGoogle Scholar
Annandale, N. (1928) Cirripedes associated with Indian corals of the families Astraeidae and Fungiidae. Memoirs of the Indian Museum, Calcutta 8, 6168, pl. 7.Google Scholar
Austin, A.D., Austin, S.A. and Sale, P.F. (1980) Community structure of the fauna associated with the coral Pocillopora damicornis (L.) on the Great Barrier Reef. Australian Journal of Marine and Freshwater Research 31, 163174.CrossRefGoogle Scholar
Baker, A.C. (2003) Flexibility and specificity in coral–algal symbiosis: diversity, ecology and biogeography of Symbiodinium. Annual Review of Ecology, Evolution, and Systematics 34, 661689.CrossRefGoogle Scholar
Barneah, O., Brickner, I., Hooge, M., Weis, V.M., LaJeunesse, T.C. and Benayahu, Y. (2007a) Three party symbiosis: acoelomorph worms, corals and unicellular algal symbionts in Eilat (Red Sea). Marine Biology 151, 12151223.CrossRefGoogle Scholar
Barneah, O., Brickner, I., Hooge, M., Weis, V.M. and Benayahu, Y. (2007b) First evidence of maternal transmission of algal endosymbionts at an oocyte stage in a triploblastic host, with observations on reproduction in Waminoa brickneri (Acoelomorpha). Invertebrate Biology 126, 113119.CrossRefGoogle Scholar
Bellwood, D.R. and Hughes, T.P. (2001) Regional-scale assembly rules and biodiversity of coral reefs. Science 292, 15321534.CrossRefGoogle ScholarPubMed
Bellwood, D.R., Hughes, T.P., Folke, C. and Nyström, M. (2004) Confronting the coral reef crisis. Nature 429, 827833.CrossRefGoogle ScholarPubMed
Benzoni, F., Stefani, F., Stolarski, J., Pichon, M., Mitta, G. and Galli, P. (2007) Debating phylogenetic relationships of the scleractinian Psammocora: molecular and morphological evidences. Contributions to Zoology 76, 3554.CrossRefGoogle Scholar
Bouillon, J., Massin, C. and Van Goethem, J. (1983) Fungiacava eilatensis Soot-Ryen, 1969 (Bivalvia, Mytilidae) et Leptoconchus striatus Rüppell, 1835 (Gastropoda, Coralliophilidae), mollusques perforant des Fungia (Anthozoa, Fungiidae) récoltés en Papouasie Nouvelle-Guinée. Bulletin des Séances Académie Royale des Sciences d'Outre-Mer 4, 549570.Google Scholar
Brickner, I., Simon-Blecher, N. and Achituv, A. (2010) Darwin's Pyrgoma (Cirripedia) revisited: revision of the Savignium group, molecular analysis and description of new species. Journal of Crustacean Biology 30, 266291.CrossRefGoogle Scholar
Brooks, D.R. and McLennan, D.A. (1994) Historical ecology as a research programme: scope, limitations and the future. In Eggleton, P. and Vane-Wright, R.I. (eds) Phylogenetics and ecology. London: Academic Press, pp. 103122.Google Scholar
Bruce, A.J. (1976) A synopsis of the pontoniinid shrimp fauna of Central East Africa. Journal of the Marine Biological Association of India 16 [for 1974], 462490.Google Scholar
Bruce, A.J. (1977) Periclimenes kororensis n. sp., an unusual shrimp associate of the fungiid coral, Heliofungia actiniformis. Micronesica 13, 3343.Google Scholar
Bruce, A.J. (1978) A report on a small collection of pontoniine shrimps from Queensland, Australia. Crustaceana 33, 167181.CrossRefGoogle Scholar
Bruce, A.J. (1981) Pontoniine shrimps of Heron Island. Atoll Research Bulletin 245, 133.CrossRefGoogle Scholar
Bruce, A.J. (1983) The pontoniine shrimp fauna of Australia. Memoirs of the Australian Museum 18, 195218.CrossRefGoogle Scholar
Bruce, A.J. (1985) Some caridean associates of scleractinian corals in the Ryukyu Islands. Galaxea, 4, 121.Google Scholar
Bruce, A.J. (2005) Pontoniine shrimps from Papua New Guinea, with designation of two new genera, Cainonia and Colemonia (Crustacea: Decapoda: Palaemonidae). Memoirs of the Queensland Museum 51, 333383.Google Scholar
Bruce, A.J. and Svoboda, A. (1984) A report on a small collection of coelenterate-associated pontoniine shrimps from Cebu, Philippines Islands. Asian Marine Biology 1, 8799.Google Scholar
Cervino, J.M., Hayes, R., Goreau, T.J. and Smith, G.W. (2004) Zooxanthaellae regulation in yellow blotch/band and other coral diseases contrasted with temperature related bleaching: in situ destruction vs expulsion. Symbiosis 37, 6385.Google Scholar
Cervino, J.M., Thompson, F.L., Gomez-Gil, B., Lorence, E.A., Goreau, T.J., Hayes, R.L., Winiarski-Cervino, K.B., Smith, G.W., Hughen, K. and Bartels, E. (2008) The Vibrio core group induces yellow band disease in Caribbean and Indo-Pacific reef-building corals. Journal of Applied Microbiology 105, 16581671.CrossRefGoogle Scholar
Chace, F.A. and Bruce, A.J. (1993) The caridean shrimps (Crustacea: Decapoda) of the Albatross Philippine Expedition 1907–1910, Part 6: Superfamily Palaemonoidea. Smithsonian Contributions to Zoology 543, 1152.CrossRefGoogle Scholar
Coffroth, M.A. and Santos, S.R. (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156, 1934.CrossRefGoogle ScholarPubMed
Coles, S.L. (1980) Species diversity of decapods associated with living and dead reef coral Pocillopora meandrina. Marine Ecology Progress Series 2, 281291.CrossRefGoogle Scholar
Cooper, T.F., Ulstrup, K.E., Dandan, S.S., Heyward, A.J., Kuhl, M., Muirhead, A.N., O'leary, R., Ziersen, B. and Van Oppen, M.J.H. (2011) Niche specialization of reef-building corals in the mesophotic zone: metabolic trade-offs between divergent Symbiodinium types. Proceedings of the Royal Society of London B, Biological Sciences 278, 18401850.CrossRefGoogle ScholarPubMed
Cruz-Barraza, J.A., Carballo, J.L., Bautista-Guerrero, E. and Nava, H. (2011) New species of excavating sponges (Porifera: Demospongiae) on coral reefs from the Mexican Pacific Ocean. Journal of the Marine Biological Association of the United Kingdom 91, 9991013.CrossRefGoogle Scholar
Dawson, C.E. (1983) Synopsis of the Indo-Pacific pipefish genus Siokunichthys (Syngnathidae), with description of S. nigrolineatus n. sp. Pacific Science 37, 4963.Google Scholar
De Grave, S. (1998) Pontoniinae (Decapoda, Caridea) associated with Heliofungia actiniformis (Scleractinia) from Hansa Bay, Papua New Guinea. Belgian Journal of Zoology 128, 1322.Google Scholar
De Grave, S. and Fransen, C.H.J.M. (2010) Contributions to shrimp taxonomy—Editorial. Zootaxa 2372, 56.CrossRefGoogle Scholar
De Grave, S. and Fransen, C.H.J.M. (2011) Carideorum catalogus: the recent species of the dendrobranchiate, stenopodidean, procarididean and caridean shrimps (Crustacea: Decapoda). Zoologische Mededelingen, Leiden 85, 195589.Google Scholar
De Jong, I. (1995) Mushroom coral-inhabiting barnacles of SW Sulawesi, Indonesia. MSc thesis. Leiden University, Leiden, The Netherlands.Google Scholar
Ditlev, H. (2003) New scleractinian corals (Cnidaria: Anthozoa) from Sabah, North Borneo. Description of one new genus and eight new species, with notes on their taxonomy and ecology. Zoologische Mededelingen, Leiden 77, 193219.Google Scholar
Fize, A. and Serène, R. (1956) Note préliminaire sur huit espèces nouvelles, dont une d'un genre nouveau, d’ Hapalocarcinidae. Bulletin de la Société Zoologique de France 80, 375378.Google Scholar
Fize, A. and Serène, R. (1957) Les Hapalocarcinidés du Viet-Nam. Mémoires de l'Institut Océanographique de Nhatrang 10, 1202.Google Scholar
Fonseca, A.C., Dean, H.K. and Cortés, J. (2006) Non-colonial macro-borers as indicators of coral reef status in the South Pacific of Costa Rica. Revista de Biología Tropical 54, 101115.CrossRefGoogle ScholarPubMed
Foster, B.A. (1980) Shallow water barnacles from Hong Kong. In Morton, B.S. and Tseng, C.K. (eds) Proceedings of the First International Marine Biological Workshop: the Marine Flora and Fauna of Hong Kong and Southern China, Hong Kong, 1980. Hong Kong: Hong Kong University Press, pp. 207232.Google Scholar
Fransen, C.H.J.M. (1989) Notes on caridean shrimps collected during the Snellius-II Expedition. I. Associates of Anthozoa. Netherlands Journal of Sea Research 23, 131147.CrossRefGoogle Scholar
Fransen, C.H.J.M. (2004) Pontoniine shrimps. In Hoeksema, B.W. (ed.) Marine biodiversity of the coastal area of the Berau region, East Kalimantan, Indonesia. Leiden: Naturalis, pp. 1921.Google Scholar
Fransen, C.H.J.M. (2008) Pontoniine shrimps. In Hoeksema, B.W. and Van der Meij, S.E.T (eds) Cryptic marine biota of the Raja Ampat Islands group. Leiden: Naturalis, pp. 1618.Google Scholar
Fransen, C.H.J.M. (2010) Palaemonoid shrimps. In Hoeksema, B.W. and Van der Meij, S.E.T (eds) Crossing marine lines at Ternate: capacity building of junior scientists in Indonesia for marine biodiversity assessments. Leiden: NCB Naturalis, pp. 2630.Google Scholar
Fransen, C.H.J.M. and De Grave, S. (2009) Evolution and radiation of shrimp-like decapods: an overview. In Martin, J.W., Crandall, K.A. and Felder, D.L. (eds) Decapod Crustacean phylogenetics. Crustacean Issues Volume 18. Boca Raton, FL: CRC Press, pp. 245259.Google Scholar
Fransen, C.H.J.M. and Holthuis, L.B. (2007) Vir smiti spec. nov., a new scleractinian associated pontoniine shrimp (Crustacea: Decapoda: Palaemonidae) from the Indo-West Pacific. Zoologische Mededelingen, Leiden 81, 101114.Google Scholar
Galkin, S.V. (1986) On the system of the genus Cantellius (Cirripedia, Pyrgomatidae). Zoologicheskij Zhurnal 65, 12671272. [In Russian.]Google Scholar
Gittenberger, A. (2003) The wentletrap Epitonium hartogi spec. nov. (Gastropoda: Epitoniidae), associated with bubble coral species, Plerogyra spec. (Scleractinia: Euphyllidae), off Indonesia and Thailand. Zoologische Verhandelingen, Leiden 345, 139150.Google Scholar
Gittenberger, A. and Gittenberger, E. (2005) A hitherto unnoticed adaptive radiation: epitoniid species (Gastropoda: Epitoniidae) associated with corals (Scleractinia). Contributions to Zoology 74, 125204.CrossRefGoogle Scholar
Gittenberger, A. and Gittenberger, E. (2011) Cryptic, adaptive radiation of parasitic snails: sibling species of Leptoconchus (Gastropoda: Coralliophilidae) in corals. Organisms, Diversity and Evolution 11, 2141.CrossRefGoogle Scholar
Gittenberger, A., Goud, J. and Gittenberger, E. (2000) Epitonium (Gastropoda: Epitoniidae) associated with mushroom corals (Scleractinia: Fungiidae) from Sulawesi, Indonesia, with the description of four new species. Nautilus 114, 113.Google Scholar
Gittenberger, A., Reijnen, B.T. and Hoeksema, B.W. (2011) A molecularly based phylogeny reconstruction of mushroom corals (Scleractinia: Fungiidae) with taxonomic consequences and evolutionary implications for life history traits. Contributions to Zoology 80, 107132.CrossRefGoogle Scholar
Gotelli, N.J. and Abele, L.G. (1983) Community patterns of coral-associated decapods. Marine Ecology Progress Series 13, 131139.CrossRefGoogle Scholar
Guo, C.C., Hwang, J.S. and Fautin, DG (1996) Host selection by shrimps symbiotic with sea anemones: a field survey and experimental laboratory analysis. Journal of Experimental Marine Biology and Ecology 202, 165176.CrossRefGoogle Scholar
Haapkylä, J., Seymour, A.S., Barneah, O., Brickner, I., Hennige, S., Suggett, D. and Smith, D. (2009) Association of Waminoa sp. (Acoela) with corals in the Wakatobi Marine Park, South-East Sulawesi, Indonesia. Marine Biology 156, 10211027.CrossRefGoogle Scholar
Hiro, F. (1935) A study of cirripeds associated with corals occurring in Tanabe Bay. Records of Oceanographic Works in Japan 7, 128.Google Scholar
Hiro, F. (1938) Studies on the animals inhabiting reef corals II. Cirripeds of the genera Creusia and Pyrgoma. Palao Tropical Biological Station Studies 1, 391416, pl. 1.Google Scholar
Hoeksema, B.W. (1983) Excavation patterns and spiculae dimensions of the boring sponge Cliona celata from the SW Netherlands. Senckenbergiana Maritima 15, 5585.Google Scholar
Hoeksema, B.W. (1989) Taxonomy, phylogeny and biogeography of mushroom corals (Scleractinia: Fungiidae). Zoologische Verhandelingen, Leiden 254, 1295.Google Scholar
Hoeksema, B.W. (1991a) Control of bleaching in mushroom coral populations (Scleractinia: Fungiidae) in the Java Sea: stress tolerance and interference by life history strategy. Marine Ecology Progress Series 74, 225237.CrossRefGoogle Scholar
Hoeksema, B.W. (1991b) Evolution of body size in mushroom corals (Scleractinia: Fungiidae) and its ecomorphological consequences. Netherlands Journal of Zoology 41, 122139.Google Scholar
Hoeksema, B.W. (1993a) Mushroom corals (Scleractinia: Fungiidae) of Madang Lagoon, northern Papua New Guinea: an annotated checklist with the description of Cantharellus jebbi spec. nov. Zoologische Mededelingen, Leiden 67, 119.Google Scholar
Hoeksema, B.W. (1993b) Historical biogeography of Fungia (Pleuractis) spp. (Scleractinia: Fungiidae), including a new species from the Seychelles. Zoologische Mededelingen, Leiden 67, 639654.Google Scholar
Hoeksema, B.W. (2004) Impact of budding on free-living corals at East Kalimantan, Indonesia. Coral Reefs 23, 492.Google Scholar
Hoeksema, B.W. (2007) Delineation of the Indo-Malayan centre of maximum marine biodiversity: the Coral Triangle. In Renema, W. (ed.) Biogeography, time and place: distributions, barriers and islands. Dordrecht: Springer, pp. 117178.CrossRefGoogle Scholar
Hoeksema, B.W. (2009) Attached mushroom corals (Scleractinia: Fungiidae) in sediment-stressed reef conditions at Singapore, including a new species and a new record. Raffles Bulletin of Zoology Supplement 22, 8190.Google Scholar
Hoeksema, B.W. and Achituv, Y. (1993) First Indonesian record of Fungiacava eilatensis Goreau et al., 1968 (Bivalvia: Mytilidae), endosymbiont of Fungia spp. (Scleractinia: Fungiidae). Basteria 57, 131138.Google Scholar
Hoeksema, B.W. and Best, M.B. (1991) New observations on scleractinian corals from Indonesia: 2. Sipunculan-associated species belonging to the genera Heterocyathus and Heteropsammia. Zoologische Mededelingen, Leiden 65, 221245.Google Scholar
Hoeksema, B.W. and Dai, C.F. (1991) Scleractinia of Taiwan. II Family Fungiidae (with the description of a new species). Bulletin of the Institute of Zoology, Academia Sinica 30, 201226.Google Scholar
Hoeksema, B.W. and Fransen, C.H.J.M. (2011) Space partitioning by symbiotic shrimp species cohabitating in the mushroom coral Heliofungia actiniformis at Semporna, eastern Sabah. Coral Reefs 30, 519.CrossRefGoogle Scholar
Hoeksema, B.W. and Gittenberger, A. (2008) Records of some marine parasitic molluscs from Nha Trang, Vietnam. Basteria 72, 129133.Google Scholar
Hoeksema, B.W. and Gittenberger, A. (2010) High densities of mushroom coral fragments at West Halmahera, Indonesia. Coral Reefs 29, 691.CrossRefGoogle Scholar
Hoeksema, B.W. and Kleemann, K. (2002) New records of Fungiacava eilatensis Goreau et al., 1968 (Bivalvia: Mytilidae) boring in Indonesian mushroom corals (Scleractinia: Fungiidae). Basteria 66, 2530.Google Scholar
Hoeksema, B.W. and Koh, E.G.L. (2009) Depauperation of the mushroom coral fauna (Fungiidae) of Singapore (1860s–2006) in changing reef conditions. Raffles Bulletin of Zoology Supplement 22, 91101.Google Scholar
Hoeksema, B.W. and Matthews, J.L. (2011) Contrasting bleaching patterns in mushroom coral assemblages at Koh Tao, Gulf of Thailand. Coral Reefs 30, 95.CrossRefGoogle Scholar
Hoeksema, B.W. and Waheed, Z. (2011) Initial phase of autotomy in fragmenting Cycloseris corals at Semporna, eastern Sabah, Malaysia. Coral Reefs. DOI 10.1007/S00338-011-0807-6.CrossRefGoogle Scholar
Hoeksema, B.W., Van der Land, J., Van der Meij, S.E.T., Van Ofwegen, L.P., Reijnen, B.T., Van Soest, R.W.M. and De Voogd, N.J. (2011) Unforeseen importance of historical collections as baselines to determine biotic change of coral reefs: the Saba Bank case. Marine Ecology 32, 135141.CrossRefGoogle Scholar
Hughes, T.P., Bellwood, D.R. and Connolly, S.R. (2002) Biodiversity hotspots, centres of endemicity, and the conservation of coral reefs. Ecology Letters 5, 775784.CrossRefGoogle Scholar
Humes, A.G. (1973) Cyclopoid copepods (Lichomolgidae) from fungiid corals in New Caledonia. Zoologischer Anzeiger 190, 312333.Google Scholar
Humes, A.G. (1978) Lichomolgid copepods (Cyclopoida) associated with fungiid corals (Scleractinia) in the Moluccas. Smithsonian Contributions to Zoology 253, 148.Google Scholar
Humes, A.G. (1979) Coral-inhabiting copepods from the Moluccas, with a synopsis of cyclopoids associated with scleractinian corals. Cahiers de Biologie Marine 20, 77107.Google Scholar
Humes, A.G. (1996) Anchimolgus gratus n. sp. (Copepoda: Poecilostomatoida: Anchimolgidae), associated with the scleractinian coral Lithactinia novaehiberniae in New Caledonia. Contributions to Zoology 66, 193200.Google Scholar
Humes, A.G. (1997) Copepoda (Siphonostomatoida) associated with the fungiid coral Parahalomitra in the southwestern Pacific. Journal of Natural History 31, 5768.CrossRefGoogle Scholar
Humes, A.G. and Dojiri, M. (1983) Copepoda (Xarifiidae) parasitic in scleractinian corals from the Indo-Pacific. Journal of Natural History 17, 257307.CrossRefGoogle Scholar
Hutchings, P. and Peyrot-Clausade, M. (1988) Macro-infaunal boring communities of Porites: a biogeographical comparison. Proceedings of the 6th International Coral Reef Symposium, Australia 3, 263267.Google Scholar
Hutchings, P.A., Kiene, W.E., Cunningham, R.B. and Donnelly, C. (1992) Spatial and temporal patterns of non-colonial boring organisms (polychaetes, sipunculans and bivalve molluscs) in Porites at Lizard Island, Great Barrier Reef. Coral Reefs 11, 2331.CrossRefGoogle Scholar
Kim, I.-H. (2003) Copepods (Crustacea) associated with marine invertebrates from New Caledonia. Korean Journal of Systematic Zoology Special Issue 4, 1167.Google Scholar
Kim, I.-H. (2007) Copepods (Crustacea) associated with marine invertebrates from the Moluccas. Korean Journal of Systematic Zoology Special Issue 6, 1126.Google Scholar
Kim, I.-H. (2010) Siphonostomatoid Copepoda (Crustacea) associated with invertebrates from tropical waters. Korean Journal of Systematic Zoology Special Issue 8, 1176.Google Scholar
Kleemann, K. (1980) Boring bivalves and their host corals from the Great Barrier Reef. Journal of Molluscan Studies 46, 1354.Google Scholar
Kleemann, K. (1990) Evolution of chemically-boring Mytilidae (Bivalvia). In Morton, B (ed.) The Bivalvia. Proceedings of a Memorial Symposium in honour of Sir Charles Maurice Yonge (1899–1986), Edinburgh 1986. Hong Kong: Hong Kong University Press, pp. 111124.Google Scholar
Kleemann, K. (1994) Associations of coral and boring bivalves since the Late Cretaceous. Facies 31, 131140.CrossRefGoogle Scholar
Kleemann, K. (1995) Associations of coral and boring bivalves: Lizard Island (Great Barrier Reef, Australia) versus Safaga (N Red Sea). Beiträge zur Paläontologie 20, 3139.Google Scholar
Kleemann, K. and Hoeksema, B.W. (2002) Lithophaga (Bivalvia: Mytilidae), including a new species, boring in mushroom corals (Scleractinia: Fungiidae) at South Sulawesi, Indonesia. Basteria 66, 1124.Google Scholar
Knowlton, N. and Rohwer, F. (2003) Multispecies microbial mutualisms on coral reefs: the host as a habitat. American Naturalist 162 Supplement, S51S62.CrossRefGoogle ScholarPubMed
Kokshoorn, B., Goud, J., Gittenberger, E. and Gittenberger, A. (2007) Epitoniid parasites (Gastropoda, Prosobranchia, Epitoniidae) and their host sea anemones (Cnidaria, Actiniaria & Ceriantharia) in the Spermonde archipelago, Sulawesi, Indonesia. Basteria 71, 3356.Google Scholar
Kolosváry, G. (1948) New data of cirripeds associated with corals. Annals and Magazine of Natural History Series 11, 14, 358368.Google Scholar
Korringa, P. (1951) The shell of Ostrea edulis as a habitat. Archives Neerlandaises de Zoologie 10, 32152.CrossRefGoogle Scholar
Kropp, R.K. (1990) Revision of the genera of gall crabs (Crustacea: Cryptochiridae) occurring in the Pacific Ocean. Pacific Science 44, 417448.Google Scholar
Kühl, M., Holst, G., Larkum, A.W.D., and Ralph, P.J. (2008) Imaging of oxygen dynamics within the endolithic algal community of the massive coral Porites lobata (Dana). Journal of Phycology 44, 541550.CrossRefGoogle Scholar
Kuiter, R.H. (2000) Seahorses, pipefishes and their relatives. Chorleywood, UK: TMC Publishing.Google Scholar
Kuiter, R.H. (2009) Seahorses and their relatives. Seaford, Australia: Aquatic Photographics.Google Scholar
LaJeunesse, T.C., Bhagooli, R., Hidaka, M., DeVantier, L., Done, T., Schmidt, G.W., Fitt, W.K. and Hoegh-Guldberg, O. (2004a) Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Marine Ecology Progress Series 84, 147161.CrossRefGoogle Scholar
LaJeunesse, T.C., Thornhill, D.J., Cox, E.F., Stanton, F.G., Fitt, W.K. and Schmidt, G.W. (2004b) High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs 23, 596603.Google Scholar
LaJeunesse, T.C., Lee, S., Bush, S. and Bruno, J.F. (2005) Persistence of non-Caribbean algal symbionts in Indo-Pacific mushroom corals released to Jamaica 35 years ago. Coral Reefs 24, 157159.CrossRefGoogle Scholar
Lewis, J.B. and Snelgrove, P.V.R. (1990) Corallum morphology and composition of crustacean cryptofauna of the hermatypic coral Madracis mirabilis. Marine Biology 106, 267272.CrossRefGoogle Scholar
López, K., Bone, D., Rodríguez, C. and Padilla, F. (2008) Biodiversity of cryptofauna associated with reefs of the Los Roques Archipelago National Park, Venezuela. Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale, Florida 2, 13591366.Google Scholar
Lourie, S.A and Kuiter, R.H. (2008) Three new pygmy seahorse species from Indonesia (Teleostei: Syngnathidae: Hippocampus). Zootaxa 1963, 5468.CrossRefGoogle Scholar
Marin, I.N. (2008) Description of two new species from the genera Palaemonella Dana, 1852 and Vir Holthuis, 1952 (Crustacea: Caridea: Palaemonidae: Pontoniinae). Zoologische Mededelingen, Leiden 82, 375390.Google Scholar
Martin, D. and Britayev, T.A. (1998) Symbiotic polychaetes: review of known species. Oceanography and Marine Biology: an Annual Review 36, 217340.Google Scholar
Matsushima, K., Fujiwara, E. and Hatta, M. (2010) An unidentified species of acoel flatworm in the genus Waminoa associated with the coral Acropora from the field in Japan. Galaxea, Journal of Coral Reef Studies 12, 51.CrossRefGoogle Scholar
Massin, C. (1988) Boring Coralliophilidae (Mollusca, Gastropoda): coral host relationship. Proceedings of the 6th International Coral Reef Symposium, Australia 3, 177184.Google Scholar
Massin, C. and Dupont, S. (2003) Study on Leptoconchus species (Gastropoda, Coralliophilidae) infesting Fungiidae (Anthozoa: Scleractinia). 1. Presence of nine Operational Taxonomic Units (OTUs) based on anatomical and ecological characters. Belgian Journal of Zoology 133, 121126.Google Scholar
Mokady, O., Rozenblatt, S., Graur, D. and Loya, Y. (1994) Coral–host specificity of Red Sea Lithophaga bivalves: interspecific and intraspecific variation in 12S mitochondrial ribosomal RNA. Molecular Marine Biology and Biotechnology 3, 158164.Google ScholarPubMed
Moreno-Forero, S., Navas, G. and Solano, O. (1998) Cryptobiota associated to dead Acropora palmata (Scleractinia: Acroporidae) coral, Isla Grande, Colombian Caribbean. Revista de Biología Tropical 46, 229236.Google Scholar
Morton, B. (1990) Corals and their bivalve borers—the evolution of a symbiosis. In Morton, B (ed.) The Bivalvia, Proceedings of a Memorial Symposium in honour of Sir Charles Maurice Yonge (1899–1986), Edinburgh 1986. Hong Kong: Hong Kong University Press, pp. 1146.Google Scholar
Munday, P.L. (2004) Habitat loss, resource specialization, and extinction on coral reefs. Global Change Biology 10, 16421647.CrossRefGoogle Scholar
Munday, P.L., Jones, G.P. and Caley, M.J. (1997) Habitat specialisation and the distribution and abundance of coral-dwelling gobies. Marine Ecology Progress Series 152, 227239.CrossRefGoogle Scholar
Munday, P.L., Van Herwerden, L. and Dudgeon, C.L. (2004) Evidence for sympatric speciation by host shift in the sea. Current Biology 14, 14981504.CrossRefGoogle ScholarPubMed
Nogueira, J.M.M. (2003) Fauna living in colonies of Mussismilia hispida (Verrill) (Cnidaria: Scleractinia) in four south-eastern Brazil islands. Brazilian Archives of Biology and Technology 46, 421432.CrossRefGoogle Scholar
Ogawa, K. and Matsuzaki, K. (1992) An essay on host specificity, systematic taxonomy and evolution of the coral-barnacles. Bulletin of the Biogeographical Society of Japan 47, 87101.Google Scholar
Ogunlana, M.V., Hooge, M.D., Tekle, Y.I., Benayahu, Y., Barneah, O. and Tyler, S. (2005) Waminoa brickneri n. sp. (Acoela: Acoelomorpha) associated with corals in the Red Sea. Zootaxa 100, 111.CrossRefGoogle Scholar
Oigman-Pszczol, S.S. and Creed, J.C. (2006) Distribution and abundance of fauna on living tissues of two Brazilian hermatypic corals (Mussismilia hispida (Verril, 1902) and Siderastrea stellata Verril, 1868). Hydrobiologia 563, 143154.CrossRefGoogle Scholar
Okuno, J. and Bruce, A.J. (2010) Designation of Ancylomenes gen. nov., for the ‘Periclimenes aesopius species group’ (Crustacea: Decapoda: Palaemonidae), with the description of a new species and a checklist of congeneric species. Zootaxa 2372, 85105.CrossRefGoogle Scholar
Okuno, J. and Nomura, K. (2002) A new species of ‘Periclimenes aesopius species group’ (Decapoda: Palaemonidae: Pontoniinae) associated with sea anemone from Pacific coast of Honshu, Japan. Natural History Research 7, 8394.Google Scholar
Owada, M. (2007) Functional morphology and phylogeny of the rock-boring bivalves Leiosolenus and Lithophaga (Bivalvia: Mytilidae): a third functional clade. Marine Biology 150, 853860.CrossRefGoogle Scholar
Owada, M. and Hoeksema, B.W. (2011) Molecular phylogeny and shell microstructure of Fungiacava eilatensis Goreau et al., 1968, boring into mushroom corals (Scleractinia: Fungiidae), in relation to other mussels (Bivalvia: Mytilidae). Contributions to Zoology 80, 169178.CrossRefGoogle Scholar
Paulay, G. (1997) Diversity and distribution of reef organisms. In Birkeland, C. (ed.) Life and death of coral reefs. New York: Chapman and Hall, pp. 298353.CrossRefGoogle Scholar
Phillips, D.H.J. and Pullin, R.S.V. (1987) Siokunichthys nigrolineatus (Syngnathidae) found on Fungia sp. Copeia 1987, 509511.CrossRefGoogle Scholar
Plaisance, L., Knowlton, N., Paulay, G. and Meyer, C. (2009) Reef-associated crustacean fauna: biodiversity estimates using semi-quantitative sampling and DNA barcoding. Coral Reefs 28, 977986.CrossRefGoogle Scholar
Pochon, X. and Gates, R.D. (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai'i. Molecular Phylogenetics and Evolution 56, 492497.CrossRefGoogle ScholarPubMed
Poltarukha, O.P. and Dautova, T.N. (2007) Barnacles (Cirripedia, Thoracica) of Nhatrang Bay. In Britayev, T.A. and Pavlov, D.S. (eds) Benthic fauna of the Bay of Nhatrang, Southern Vietnam. Moscow: KMK Scientific Press, pp. 89123.Google Scholar
Preston, N.P. and Doherty, P.J. (1994) Cross-shelf patterns in the community structure of coral-dwelling Crustacea in the central region of the Great Barrier Reef. II. Cryptofauna. Marine Ecology Progress Series 104, 2738.CrossRefGoogle Scholar
Rawlinson, K.A., Gillis, J.A., Billings, R.E. and Borneman, E.H. (2011) Taxonomy and life history of the Acropora-eating flatworm Amakusaplana acroporae nov. sp. (Polycladida: Prosthiostomidae). Coral Reefs 30, 693705.CrossRefGoogle Scholar
Reaka-Kudla, M.L. (1997) The global biodiversity of coral reefs: a comparison with rain forests. In Reaka-Kudla, M.L., Wilson, D.E. and Wilson, E.O. (eds) Biodiversity II. Understanding and protecting our biological resources. Washington, DC: Joseph Henry Press, pp. 83108.Google Scholar
Reijnen, B.T., Hoeksema, B.W. and Gittenberger, E. (2010) Host specificity and phylogenetic relationships among Atlantic Ovulidae (Mollusca: Gastropoda). Contributions to Zoology 79, 6978.CrossRefGoogle Scholar
Reijnen, B.T., Van der, Meij, S.E.T. and Van Ofwegen, L.P. (2011) Fish, fans and hydroids: review of the host species of pygmy seahorses. ZooKeys 103, 126.Google Scholar
Rice, M.E. (1974) Sipunculans associated with coral communities. Micronesica 12, 119132.Google Scholar
Roberts, C.M., McClean, C.J., Veron, J.E.N., Hawkins, J.P., Allen, G.R., McAllister, D.E., Mittermeier, C.G., Schueler, F.W., Spalding, M., Wells, F., Vynne, C. and Werner, T.B. (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 12801284.CrossRefGoogle ScholarPubMed
Ross, A. and Newman, W.A. (1973) Revision of the coral inhabiting barnacles (Cirripedia: Balanidae). Transactions of the San Diego Society of Natural History 17, 137174.Google Scholar
Ross, A. and Newman, W.A. (2002) Coral barnacles: Cenozoic decline and extinction in the Atlantic/East Pacific versus diversification in the Indo-West Pacific. Proceedings of the 9th International Coral Reef Symposium, Bali, Indonesia 1, 179184.Google Scholar
Samini Namin, K., Risk, M.J., Hoeksema, B.W., Zohari, Z. and Rezai, H. (2010) Coral mortality and serpulid infestations associated with red tide, in the Persian Gulf. Coral Reefs 29, 509.Google Scholar
Sammarco, P.W. and Risk, M.J. (1990) Large-scale patterns in internal bioerosion of Porites: cross continental shelf trends on the Great Barrier Reef. Marine Ecology Progress Series 59, 145156.CrossRefGoogle Scholar
Schönberg, C.H.L. (2000) Bioeroding sponges common to the Central Australian Great Barrier Reef: description of three new species, two new records, and additions to two previously described species. Senckenbergiana Maritima 30, 161221.CrossRefGoogle Scholar
Schönberg, C.H.L. (2001) Small-scale distribution of Great Barrier Reef bioeroding sponges in shallow water. Ophelia 55, 3954.CrossRefGoogle Scholar
Soong, K.Y. and Chang, K.H. (1983) The coral-inhabiting barnacles (Crustacea: Thoracica: Pyrgomatidae) from southern most coast of Taiwan. Bulletin of the Institute of Zoology, Academia Sinica 22, 243253.Google Scholar
Starmer, J.A. (2003) An annoted checklist of ophiuroids (Echinodermata) from Guam. Micronesica 3536, 547–562.Google Scholar
Stat, M. and Gates, R.D. (2011) Clade D Symbiodinium in scleractinian corals: a ‘nugget’ of hope, a selfish opportunist, an ominous sign, or all of the above? Journal of Marine Biology 2011, Article ID 730715, 19.CrossRefGoogle Scholar
Stella, J.S., Jones, G.P. and Pratchett, M.S. (2010) Variation in the structure of epifaunal invertebrate assemblages among coral hosts. Coral Reefs 29, 957973.CrossRefGoogle Scholar
Takeda, M. and Tamura, Y. (1979) Coral-inhabiting crabs of the family Hapalocarcinidae from Japan. I. Three species obtained from mushroom coral, Fungia. Bulletin of the National Science Museum Tokyo, Series A (Zoology) 5, 183194.Google Scholar
Takeda, M. and Tamura, Y. (1981) Coral-inhabiting crabs of the family Hapalocarcinidae from Japan. VII. Genus Faviacola. Researches on Crustaceans 11, 4150.CrossRefGoogle Scholar
Ten Hove, H.A. and Kupriyanova, E.K. (2009) Taxonomy of Serpulidae (Annelida, Polychaeta): the state of affairs. Zootaxa 2036, 1126.CrossRefGoogle Scholar
Van der Meij, S.E.T., Moolenbeek, R.G. and Hoeksema, B.W. (2009) Decline of the Jakarta Bay molluscan fauna linked to human impact. Marine Pollution Bulletin 59, 101107.CrossRefGoogle ScholarPubMed
Van der Meij, S.E.T., Suharsono and Hoeksema, B.W. (2010) Long-term changes in coral assemblages under natural and anthropogenic stress in Jakarta Bay (1920–2005). Marine Pollution Bulletin 60, 14421454.CrossRefGoogle ScholarPubMed
Veron, J.E.N. (1990) New Scleractinia from Japan and other Indo-Pacific countries. Galaxea 9, 95173.Google Scholar
Veron, J.E.N. (2002) New species described in corals of the world. Australian Institute of Marine Science Monograph Series 11, 1206.Google Scholar
Weis, V.M., Reynolds, W.S., DeBoer, M.D. and Krupp, D.A. (2001) Host–symbiont specificity during onset of symbiosis between the dinoflagellates Symbiodinium spp. and planula larvae of the scleractinian coral Fungia scutaria. Coral Reefs 20, 301308.CrossRefGoogle Scholar
Westoby, M. (2006) Phylogenetic ecology at world scale, a new fusion between ecology and evolution. Ecology 87, S163S165.CrossRefGoogle Scholar
Wijgerde, T., Spijkers, P., Verreth, J. and Osinga, R. (2011) Epizoic acoelomorph flatworms compete with their coral host for zooplankton. Coral Reefs 30, 665.CrossRefGoogle Scholar
Wilson, B.R. (1979) A revision of Queensland lithophagine mussels (Bivalvia, Mytilidae, Lithophaginae). Records of the Australian Museum 32, 435489.CrossRefGoogle Scholar
Wilson, B.R. (1985) Sibling species of Leiosolenus (Bivalvia, Mytilidae, Lithophaginae) boring in living corals in the Indo-West Pacific region. Proceedings of the 5th International Coral Reef Congress, Tahiti 5, 183190.Google Scholar
Yamashiro, H. (1990) A wentletrap Epitonium bullatum associated with a coral Sandalolitha robusta. Venus 49, 299305.Google Scholar
Yamashiro, H. (1999) Masking behaviour in a commensal shrimp, Metapontonia fungiacola Bruce, 1967 that uses the soft tissues of the host coral (Decapoda, Palaemonidae, Pontoniinae). Crustaceana 72, 307312.CrossRefGoogle Scholar
Yamashiro, H. and Nishihira, M. (1998) Experimental study of growth and asexual reproduction in Diaseris distorta (Michelin, 1843), a free-living fungiid coral. Journal of Experimental Marine Biology and Ecology 225, 253267.CrossRefGoogle Scholar
Yamashiro, H.M., Hidaka, M., Nishihira, M. and Poung-in, S. (1989) Morphological studies on skeletons of Diaseris fragilis, a free-living coral which reproduces asexually by natural autotomy. Galaxea 8, 283294.Google Scholar
Zabala, M., Maluquer, P. and Harmelin, J.G. (1993) Epibiotic bryozoans on deep-water seleractinian corals from the Catalonia slope (western Mediterranean, Spain, France). Scientia Marina 57, 6578.Google Scholar