Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:34:20.424Z Has data issue: false hasContentIssue false

Morphometric and gonad maturity of the spider crab Libinia spinosa (Crustacea: Brachyura: Majoidea: Epialtidae) in Argentina

Published online by Cambridge University Press:  01 November 2010

M.P. Sal Moyano*
Affiliation:
Departamento de Biologia, Estación Costera J. J. Nágera, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes, 3350, 7600, Mar del Plata. Argentina CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas
M.A. Gavio
Affiliation:
Departamento de Biologia, Estación Costera J. J. Nágera, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes, 3350, 7600, Mar del Plata. Argentina
M.D. Maggi
Affiliation:
Departamento de Biologia, Estación Costera J. J. Nágera, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes, 3350, 7600, Mar del Plata. Argentina CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas
*
Correspondence should be addressed to: M.P. Sal Moyano, Departamento de Biologia, Estación Costera J. J. Nágera, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes, 3350, 7600, Mar del Plata. Argentina email: [email protected]

Abstract

Morphometric and gonad maturity of Libinia spinosa on the coast of Mar del Plata, Argentina, were assessed. In both sexes various morphometric features were measured to determine the morphometric maturity, and through macroscopic inspection of gonads and analysis of its content, different stages of gonad maturity were described and the physiological maturity was estimated. In females, the carapace width ranged from 8 to 56.5 mm while in males from 4.6 to 81.97 mm. The size at which 50% of females were morphometrically mature was calculated at 40.6 mm. Based on the allometric growth of the abdomen, two morphometric groups of females were recognized as juvenile and adult phases. In males, results of principal component analysis showed that the most suitable variables that efficiently represent the size and sexual differentiation factor were the carapace width and cheliped length respectively. The size at which 50% of males were morphometrically mature was estimated at 58.9 mm. Based on the allometry of the cheliped growth, two morphometric groups were recognized as immature and mature phases. Males maintained under laboratory conditions moulted and growth was related to regular and terminal moults. Males reached their terminal moult at a wide size-range, from 48.5 mm to 61.4 mm of carapace width. This terminal moult coincided with the size of morphometric maturity. In both sexes four stages of gonad development were described, two corresponded to immature phases and two to mature phases. The size at which 50% of females and males reached gonad maturity was LC50 = 40.33 mm and LC50 = 33.6 mm, respectively. In females, both morphometric and gonad maturity occurred at a similar size. In males, gonad maturity is acquired prior to morphometric maturity, thus three different types of males were characterized: (1) those with small carapace width and cheliped, without spermatophores in their vas deferens; (2) those with large carapace width and small cheliped, bearing spermatophores in their vas deferens; and (3) those with large carapace width and cheliped, bearing spermatophores in their vas deferens.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alunno-Bruscia, M. and Sainte-Marie, B. (1998) Abdomen allometry, ovary development, and growth of female snow crab, Chionoecetes opilio (Brachyura, Majidae), in the northwestern Gulf of St Lawrence. Canadian Journal of Fisheries and Aquatic Science 55, 459477.CrossRefGoogle Scholar
Barón, P.J., Quiroga, A.P., Leal, G.A. and González-Pisani, X. (2009) Morphological maturity of the knobbed spider crab, Leurocyclus tuberculosus (H. Milne-Edwards & Lucas, 1842) (Brachyura: Majidae) in the Northern Patagonian Gulfs. Crustaceana 82, 267273.Google Scholar
Beninger, P.G., Elner, R.W., Foyle, T.P. and Odense, P.H. (1988) Functional anatomy of the male reproductive system and the female spermatheca in the snow crab Chionoecetes opilio (O. Fabricius) (Decapoda: Majidae) and a hypothesis for fertilization. Journal of Crustacean Biology 8, 322332.CrossRefGoogle Scholar
Boschi, E. (1964) Los Crustáceos Decápodos Brachyura del Litoral Bonaerense (R. Argentina). Boletín del Instituto de Biología Marina 6, 176.Google Scholar
Boschi, E. (2000) Species of decapod crustaceans and their distribution in the American Marine Zoogeographic Provinces. Revista de Investigación y Desarrollo Pesquero 13, 7136.Google Scholar
Bryant, A.D. and Hartnoll, R.G. (1995) Reproductive investment in two spider crabs with different breeding strategies. Journal of Experimental Marine Biology and Ecology 188, 261275.CrossRefGoogle Scholar
Carmona-Suárez, C.A. (2003) Reproductive biology and relative growth in the spider crab Maja crispata (Crustacea: Brachyura: Majidae). Scientia Marina 67, 7580.Google Scholar
Clayton, D.A. (1990) Crustacean allometric growth: a case for caution. Crustaceana 60, 270290.CrossRefGoogle Scholar
Comeau, M. and Conan, G. (1992) Morphometry and gonad maturity of males snow crab, Chionoecetes opilio. Canadian Journal of Fisheries and Aquatic Science 49, 24602468.CrossRefGoogle Scholar
Conan, G.Y., Comeau, M. and Moriyasu, M. (1985) Functional maturity of male American lobsters, Homarus americanus. International Commission for the Exploration of the Sea C.M. 1985/K: 29, 56 pp.Google Scholar
Conan, G.Y. and Comeau, M. (1986) Functional maturity and terminal molt of the male snow crab, Chionoecetes opilio. Canadian Journal of Aquatic Sciences 43, 17101719.CrossRefGoogle Scholar
Conan, G.Y., Moriyasu, M., Comeau, M., Mallet, P., Cormier, R., Chiasson, Y. and Chiasson, Y. (1988) Growth and maturation of snow crab (Chionoecetes opilio). In Jamieson, G.S. and McKone, W.D. (eds) Proceedings of the International Workshop on Snow Crab Biology, December 8–10, 1987. Canadian Manuscript Report of Fisheries and Aquatic Sciences, Montrèal, Québec, pp. 4566.Google Scholar
Corgos, A. and Freire, J. (2006) Morphometric and gonad maturity in the spider crab Maja brachydactyla: a comparison of methods for estimating size at maturity in species with determinate growth. Journal of Marine Science 63, 851859.Google Scholar
Diesel, R. (1989) Structure and function of the reproductive system of the symbiotic spider crab Inachus phalangium (Decapoda: Majidae): observations on sperm transfer, sperm storage, and spawning. Journal of Crustacean Biology 9, 266277.CrossRefGoogle Scholar
Donaldson, W.E. and Adams, A.E. (1989) Ethogram of behavior with emphasis on mating for the tanner crab Chionoecetes bairdi Rathbun. Journal of Crustacean Biology 9, 3753.CrossRefGoogle Scholar
Elner, R.W. and Beninger, P.G. (1995) Multiple reproductive strategies in snow crab, Chionocetes opilio: physiological pathways and behavioral plasticity. Journal of Experimental Marine Biology and Ecology 193, 93112.CrossRefGoogle Scholar
Hartnoll, R.G. (1963) The biology of Manx spider crabs. Proceedings of the Zoological Society of London 47, 79300.Google Scholar
Hartnoll, R.G. (1974) Variation in growth pattern between some secondary sexual characters in crabs (Decapoda, Brachyura). Crustaceana 27, 51156.CrossRefGoogle Scholar
Hartnoll, R.G. (1978) The determination of relative growth in Crustacea. Crustaceana 32, 281293.Google Scholar
Hartnoll, R.G. (1985) Growth, sexual maturity and reproductive output. Crustacean Issues 3, 101128.Google Scholar
Hiatt, R.W. (1948) The biology of the lined shore crab, Pachygrapsus crassipes Randall. Pacific Science 2, 135213.Google Scholar
Hinsch, G.W. (1972) Some factors controlling reproduction in the spider crab, Libinia emarginata. Biological Bulletin. Marine Biological Laboratory, Woods Hole 143, 358366.CrossRefGoogle Scholar
Homola, E., Sagi, A. and Laufer, H. (1991) Relationship of claw form and exoskeleton condition to reproductive system size and methyl farnesoate in the male spider crab, Libinia emarginata. Invertebrate Reproduction and Development 20, 219225.CrossRefGoogle Scholar
Johnson, P.T. (1980) Histology of the blue crab, Callinectes sapidus. A model for the Decapoda. New York: Praeger.Google Scholar
Jones, D.R. and Hartnoll, R.G. (1997) Mate selection and mating behaviour in spider crabs. Estuarine, Coastal and Shelf Science 44, 185193.CrossRefGoogle Scholar
Lanteigne, M., Savoie, F., Robichaud, G. and Landsburg, W. (1996) Coastal temperature monitoring program: Southern Gulf of St Lawrence. Canadian Data Report of Fisheries and Aquatic Sciences 997, 158.Google Scholar
Laufer, H. and Ahl, J.S.B. (1995) Mating behaviour and methyl farnesoate levels in male morphotypes of the spider crab Libinia emarginata (Leach). Journal of Experimental Marine Biology and Ecology 193, 1520.Google Scholar
McLay, C.L. and Van den Brink, A.M. (2009) Relative growth and size at sexual maturity in Halicarcinus cookii (Brachyura: Hymenosomatidae): why are some crabs precocious moulters? Journal of the Marine Biological Association of the United Kingdom 89, 743752.CrossRefGoogle Scholar
Melo, G.A.S. (1996) Manual de Identificação dos Brachyura (caranguejos e siris) do Litoral Brasileiro. São Paulo: Plêiade.Google Scholar
Mura, M., Orrù, F. and Cau, A. (2005) Size at sexual maturity of the spider crab Anamathia rissoana (Decapoda: Majoidea) from the Sardinian Sea. Journal of Crustacean Biology 25, 110115.Google Scholar
Ng, P.K.L., Guinot, D. and Davie, P.J.L. (2008) Systema Brachyrorum: Part 1. An annotated checklist of extant brachyuran crabs of the world. Raffles Bulletin of Zoology 17, 1286.Google Scholar
O'Halloran, M.J. (1985) Moult cycle changes and the control of moult in the male snow crab, Chionoecetes opilio. MS thesis. Dalhousie University, Halifax, Nova Scotia.Google Scholar
Powles, H.W. (1968) Distribution and biology of the spider crab Chionoecetes opilio in the Magdalen Shallows, Gulf of St Lawrence. Journal of the Fisheries Research Board of Canada, MS Report Series 997, 106 pp.Google Scholar
Rotllant, G., Takac, P., Liu, L., Scott, G.L. and Laufer, H. (2000) Role of ecdysteroids and methyl farnesoate in morphogenesis and terminal moult in polymorphic males of the spider crab Libinia emarginata. Aquaculture 190, 103118.Google Scholar
Sagi, A., Ahl, J.S.B., Danaee, H. and Laufer, H. (1991) Methyl farnesoate and reproductive behavior in male morphotypes of the spider crab Libinia emarginata. American Zoologist 31, 87A.Google Scholar
Sainte-Marie, B. and Hazel, F. (1992) Moulting and mating of snow crabs, Chionoecetes opilio (O. Fabricus), in shallow waters of the north-western Gulf of Saint Lawrence. Canadian Journal of Fisheries and Aquatic Science 49, 12821293.Google Scholar
Sainte-Marie, B., Raymond, S. and Brèthes, J.C. (1995) Growth and maturation of the benthic phases of male show crab, Chionoecetes opilio (Brachyura: Majidae). Canadian Journal of Fisheries and Aquatic Sciences 52, 903924.CrossRefGoogle Scholar
Sal Moyano, M.P. (2007) Biología reproductiva de Libinia spinosa (Crustacea: Decapoda: Majidae) en el ambiente costero de Mar del Plata: caracteres morfológicos asociados al comportamiento reproductivo. Licentiate thesis. Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.Google Scholar
Sal Moyano, M.P., Gavio, M.A. and Cuartas, E.I. (2010) Morphology and function of the reproductive tract of the spider crab Libinia spinosa (Crustacea, Brachyura, Majoidea): pattern of sperm storage. Helgoland Marine Research 64, 213221.CrossRefGoogle Scholar
Sampedro, M.P., Gonzalez-Gurriarán, E., Freire, J. and Muino, R. (1999) Morphometry and sexual maturity in the spider crab Maja squinado (Decapoda: Majidae) in Galicia, Spain. Journal of Crustacean Biology 9, 578592.Google Scholar
Scelzo, M., Martinez Arca, J. and Lucero, N. (2002) Diversidad, densidad y biomasa de la macrofauna componente de los fondos de pesca ‘camarón-langostino’ frente a mar del Plata, Argentina (1998–1999). Revista de Investigación y Desarrollo Pesquero 15, 4366.Google Scholar
Schejter, L. and Spivak, E. (2005) Morphometry, sexual maturity, fecundity and epibiosis of the South American spider crab Libidoclea granaria (Brachyura: Majidae). Journal of the Marine Biological Association of the United Kingdom 85, 857863.CrossRefGoogle Scholar
Somerton, D.A. (1980) A computer technique for estimating the size of sexual maturity in crabs. Canadian Journal of Fisheries and Aquatic Sciences 37, 14881494.CrossRefGoogle Scholar
Teissier, G. (1933) Etude de la croissance de quelques variants sexuels chez Macropodia rostrata L. Bulletin Biologique de France et Belgique 67, 401444.Google Scholar
Teissier, G. (1935) Croissance des variants sexuels chez Maia squinado L. Travaux de la Station Biologique de Roscoff 13, 93130.Google Scholar
Watson, J. (1970) Mating behaviour in the spider crab Chionoecetes opilio. Journal of the Fisheries Research Board of Canada 29, 447449.CrossRefGoogle Scholar