Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T20:44:46.906Z Has data issue: false hasContentIssue false

Modelling of Phytoplankton Population Dynamics in an Enclosed Water Column

Published online by Cambridge University Press:  11 May 2009

Valerie Andersen
Affiliation:
Station Zoologique, CEROV, BP 28, 06230 Villefranche-sur-Mer, France
Paul Nival
Affiliation:
Station Zoologique, CEROV, BP 28, 06230 Villefranche-sur-Mer, France

Extract

To understand the working of the marine pelagic ecosystem one needs to study the logical frame of the complex food web. This study is much easier in an enclosed water column than in the open sea where biological interactions are often concealed by physical events.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersen, V., Nival, P. & Harris, R.P., 1987. Modelling of a planktonic ecosystem in an enclosed water column. Journal of the Marine Biological Association of the United Kingdom, 67,407430.CrossRefGoogle Scholar
Bienfang, P.K., 1981. Sinking rates of heterogeneous, temperate phytoplankton populations. Journal of Plankton Research, 3, 235253.CrossRefGoogle Scholar
Bienfang, P.K., 1982. Phytoplankton sinking-rate dynamics in enclosed experimental ecosystems. In Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems (ed. G.D., Grice and M.R., Reeve), pp. 261274. New York: Springer-Verlag.CrossRefGoogle Scholar
Boucher, J., Razouls, C. & Razouls, S., 1976. Composition chimique élémentaire en carbone et azote de Centropages typicus et Temora stylifera. Analyse des variations en fonction de la physiologie et des conditions écologiques. Cahiers de Biologie Marine, 17, 3743.Google Scholar
Caperon, J. & Meyer, J., 1972. Nitrogen-limited growth of marine phytoplankton. II. Uptake kinetics and their role in nutrient limited growth of phytoplankton. Deep-Sea Research, 19, 619632.Google Scholar
Chisholm, S.W., Azam, F. & Eppley, R.W., 1978. Silicic acid incorporation in marine diatoms on light: dark cycles: use as an assay for phased cell division. Limnology and Oceanography, 23, 518529.CrossRefGoogle Scholar
Coste, B., 1971. Les sels nutritifs entre la Sicile, la Sardaigne et la Tunisie. Cahiers Océanographiques, 23, 4983.Google Scholar
Davis, Co., 1982. The importance of understanding phytoplankton life strategies in the design of enclosure experiments. In Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems (ed. G.D., Grice and M.R., Reeve), pp. 323332. New York: Springer-Verlag.CrossRefGoogle Scholar
Dortch, Q., Clayton, J.R. Jr, Thoresen, S.S., Cleveland, J.S., Bressler, S.L. & Ahmed, S.I., 1985. Nitrogen storage and use of biochemical indices to assess nitrogen deficiency and growth rate in natural plankton populations. Journal of Marine Research, 43, 437464.CrossRefGoogle Scholar
Eppley, R.W., Holmes, R.W. & Strickland, J.D.H., 1967. Sinking rates of marine phytoplankton measured with a fluorometer. Journal of Experimental Marine Biology and Ecology, 1, 191208.CrossRefGoogle Scholar
Eppley, R.W., Koeller, P. & Wallace, G.T. Jr, 1978. Stirring influences the phytoplankton species composition within enclosed columns of coastal sea water. Journal of Experimental Marine Biology and Ecology, 2, 219239.CrossRefGoogle Scholar
Eppley, R.W., Rogers, J.W. & McCarthy, J.J., 1969. Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnology and Oceanography, 14, 912920.CrossRefGoogle Scholar
Falkowski, P.G., Dubinsky, Z. & Wyman, K., 1985. Growth-irradiance relationships in phytoplankton. Limnology and Oceanography, 30, 311321.CrossRefGoogle Scholar
Gaines, G. & Taylor, F.J.R., 1984. Extracellular digestion in marine dinoflagellates. Journal of Plankton Research, 6, 10571061.CrossRefGoogle Scholar
Galt, C.P., 1972. Development of Oikopleura dioica (Urochordate: Larvacea): Ontogeny of Behavior and of Organ Systems Related to Construction and Use of the House. PhD Thesis, University of Washington.Google Scholar
Grice, G.D., 1980. Controlled ecosystem populations experiment: biological and chemical data for Foodweb I experiment. Technical Report. Woods Hole Oceanographic Institution, no. WHOI–80–42, 367 pp.Google Scholar
Grice, G.D., Harris, R.P., Reeve, M.R., Heinbokel, J.F. & Davis, Co., 1980. Large-scale enclosed water-column ecosystems: an overview of Foodweb I, the final CEPEX experiment. Journal of the Marine Biological Association of the United Kingdom, 60, 401414.CrossRefGoogle Scholar
Grice, G.D. & Reeve, M.R. (ed.), 1982. Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems. New York: Springer-Verlag.CrossRefGoogle Scholar
Harris, R.P., 1982. Comparison of the feeding behaviour of Calanus and Pseudocalanus in two experimentally manipulated enclosed ecosystems. Journal of the Marine Biological Association of the United Kingdom, 62, 7191.CrossRefGoogle Scholar
Harrison, P.J., Conway, H.L., Holmes, R.W. & Davis, Co., 1977. Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida. Marine Biology, 43,1931.Google Scholar
Harrison, P.J. & Turpin, D.H., 1982. The manipulation of physical, chemical and biological factors to select species from natural phytoplankton communities. In Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems (ed. G.D., Grice and M.R., Reeve), pp. 275289. New York: Springer-Verlag.CrossRefGoogle Scholar
Ikeda, T., 1974. Nutritional ecology of marine zooplankton. Memoirs of the Faculty of Fisheries, Hokkaido University, 22, 197.Google Scholar
Jørgensen, S.E., Kamp-Nielsen, L., Christensen, T., Windolf-Nielsen, J. & Westergaard, B., 1986. Validation of a prognosis based upon a eutrophication model. Ecological Modelling, 32, 165182.CrossRefGoogle Scholar
King, K.R., 1982. The population biology of the larvacean Oikopleura dioica in enclosed water columns. In Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems (ed. G.D., Grice and M.R., Reeve), pp. 341351. New York: Springer-Verlag.CrossRefGoogle Scholar
Lännergren, C., 1979. Buoyancy of natural populations of marine phytoplankton. Marine Biology, 54, 110.CrossRefGoogle Scholar
Lessard, E.J. & Swift, E., 1985. Species-specific grazing rates of heterotrophic dinoflagellates in oceanic waters, measured with a dual-label radioisotope technique. Marine Biology, 87, 289296.CrossRefGoogle Scholar
Paasche, E., 1973. Silicon and the ecology of marine plankton diatoms. I. Thalassiosira pseudonana (Cyclotella nana) grown in a chemostat with silicate as limiting nutrient. Marine Biology, 19, 117126.CrossRefGoogle Scholar
Paasche, E., 1980. Silicon content of five marine plankton diatom species measured with a rapid filter method. Limnology and Oceanography, 25, 474480.CrossRefGoogle Scholar
Raimbault, P. & Mingazzini, M., 1987. Diurnal variations of intracellular nitrate storage by marine diatoms: effects of nutritional state. Journal of Experimental Marine Biology and Ecology, 112, 217232.CrossRefGoogle Scholar
Rassoulzadegan, F., 1982. Feeding in marine planktonic protozoa. Annales de I'Institut Oceanographiaue, 58 (supplement), 191206.Google Scholar
Smayda, T.J., 1970. The suspension and sinking of phytoplankton in the sea. Oceanography and Marine Biology, an Annual Review, 8, 353414.Google Scholar
Smayda, T.J. & Bienfang, P.K., 1983. Suspension properties of various phyletic groups of phytoplankton and tintinnids in an oligotrophic, subtropical system. Marine Ecology, 4, 289300.CrossRefGoogle Scholar
Smayda, T.J. & Boleyn, B.J., 1965. Experimental observations on the flotation of marine diatoms. I. Thalassiosira cf. nana, Thalassiosira rotula, and Nitzschia seriata. Limnology and Oceanography, 10, 499509.Google Scholar
Smayda, T.J. & Boleyn, B.J., 1966 a. Experimental observations on the flotation of marine diatoms. II. Skeletonema costatum and Rhizosolenia setigera. Limnology and Oceanography, 11, 1834.Google Scholar
Smayda, T.J. & Boleyn, B.J., 1966 b. Experimental observations on the flotation of marine diatoms. III. Bacteriastrum hialinum and Chaetoceros lauderi. Limnology and Oceanography, 11, 3543.CrossRefGoogle Scholar
Smetacek, V.S., 1985. Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Marine Biology, 84, 239251.CrossRefGoogle Scholar
Spero, H.J. & Morée, M.D., 1981. Phagotrophic feeding and its importance to the life cycle of the holozoic dinoflagellate Gymnodinium fungiforme. Journal ofPhycology, 17, 4351.CrossRefGoogle Scholar
Steele, J.H., Farmer, D.M. & Henderson, E.W., 1977. Circulation and temperature structure in large marine enclosures. Journal of the Fisheries Research Board of Canada, 34, 10951104.CrossRefGoogle Scholar
Steele, J.H. & Henderson, E.W., 1976. Simulation of vertical structure in a planktonic ecosystem. Scottish Fisheries Research Report, no. 5, 27 pp.Google Scholar
Steele, J.H. & Yentsch, C.S., 1960. The vertical distribution of chlorophyll. Journal of the Marine Biological Association of the United Kingdom, 39, 217226.CrossRefGoogle Scholar
Strathmann, R.R., 1967. Estimating the carbon content of phytoplankton from cell volume or plasma volume. Limnology and Oceanography, 12, 411418.CrossRefGoogle Scholar
Titman, D. & Kilham, P., 1976. Sinking in freshwater phytoplankton: some ecological implications of cell nutrient status and physical mixing processes. Limnology and Oceanography, 21, 409417.CrossRefGoogle Scholar