Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T09:20:42.701Z Has data issue: false hasContentIssue false

M-‘midget’ cells and moult cycle in Penaeus semisulcatus (Crustacea: Decapoda)

Published online by Cambridge University Press:  11 May 2009

S. Y. Al-Mohanna
Affiliation:
Faculty of Science, University of Kuwait, P.O. Box 5969, Safat, 13060, Kuwait
J. A. Nott
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PL1 2PB

Extract

Within the hepatopancreas of the shrimp Penaeus semisulcatus the functional develop ment and subsequent decay of M-‘midget’ cells is described and linked with the moult cycle. During the feeding stages the frequency of M-cells increases and they each form a large dense vacuole which contains proteinaceous material. Precursors for this material are probably derived from the haemolymph as the cells have no direct contact with the lumen of the gland. During the non-feeding stages before and after ecdysis the contents of the vacuole are progressively removed, probably to the haemolymph. Finally the cells die before the animals recommence feeding.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al-Mohanna, S. Y. & Nott, J. A. 1986. B-cells and digestion in the hepatopancreas of Penaeus semisulcatus (Crustacea: Decapoda). Journal of the Marine Biological Association of the United Kingdom, 66, 403414.CrossRefGoogle Scholar
Al-Mohanna, S. Y. & Nott, J. A., 1987. The R-cells and the digestive cycle in Penaeus semisulcatus (Crustacea: Decapoda). Marine Biology, 95, 129137.CrossRefGoogle Scholar
Al-Mohanna, S. Y., Nott, J. A. & Lane, D. J. W., 1985a. Mitotic E-and secretory F-cells in the hepatopancreas of the shrimp Penaeus semisulcatus (Crustacea: Decapoda). Journal of Marine Biological Association of the United Kingdom, 65, 901910.CrossRefGoogle Scholar
Al-Mohanna, S. Y., Nott, J. A. & Lane, D. J. W., 1985b. M-“midget” cells in the hepatopancreas of the shrimp Penaeus semisulcatus De Haan 1844 (Decapoda, Natantia). Crustaceana, 260268.CrossRefGoogle Scholar
Anderson, W. A. & Personne, P., 1970. The localization of glycogen in the spermatozoa of various invertebrate and vertebrate species. Journal of Cell Biology, 44, 2951.CrossRefGoogle ScholarPubMed
Barka, T. & Anderson, P. J., 1962. Histochemical methods for acid phosphatase using hexazonium pararosanilin as coupler. Journal of Histochemistry and Cytochemistry, 10, 741753.CrossRefGoogle Scholar
Djangmah, J. S., 1970. The effects of feeding and starvation on copper in the blood and hepatopancreas, and on the blood proteins of Crangon vulgaris (Fabricius). Comparative Biochemistry and Physiology, 32, 709731.CrossRefGoogle Scholar
Drach, P., 1939. Mue et cycle d’intermue chez les Crustacés Décapodes. Annales de I’lnstitut océanographique 19, 103391.Google Scholar
Drach, P., 1944. Étude préliminaire sur le cycle d’intermue et son conditionnement hormonal chez Leander serratus (Pennant). Bulletin biologique de la France et de la Belgique, 78. 4062.Google Scholar
Gibson, R. & Barker, P. L., 1979. The decapod hepatopancreas. Oceanography and Marine Biology, an Annual Review, 17, 285346.Google Scholar
Goldfischer, S., Essner, E. & Novikoff, A. B., 1964. The localization of phosphatase activities at the level of ultrastructure. Journal of Histochemistry and Cytochemistry, 12, 7295.CrossRefGoogle ScholarPubMed
Hopsu-Havu, V. K., Arstila, A. V., Helminen, H. J., Kalimo, H. O. & Glenner, G. G., 1967. Improvements in the method for the electron microscopic localization of arylsulphatase activity. Histochemie, 8, 5464.CrossRefGoogle ScholarPubMed
Lewis, P. R. & Knight, D. P., 1977. Staining Methodsfor Sectioned Material. Amsterdam: North Holland. [Practical Methods in Electron Microscopy, vol. 5, part 1.]Google Scholar
Mayahara, H., Hirano, H., Saito, T. & Ogawa, K., 1967. The new lead citrate method for the ultracytochemical demonstration of activity on non-specific alkaline phosphatase (orthophosphoric monoester phosphohydrolase). Histochemie, 11, 8896.CrossRefGoogle ScholarPubMed
Munro, H. N. & Linder, M. C. 1978. Ferritin: structure, biosynthesis, and role in iron metabolism. Physiological Reviews, 58, 317396.CrossRefGoogle ScholarPubMed
Nott, J. A. & Mavin, L. J., 1986. Adaptation of a quantitative programme for the X-ray analysis of solubilized tissue as microdroplets in the transmission electron microscope: application to the moult cycle of the shrimp Crangon crangon (L.). Histochemical Journal, 18, 507518.CrossRefGoogle Scholar
Scheer, B. T., 1960. Aspects of the intermoult cycle in Natantians. Comparative Biochemistry and Physiology, 1, 318.CrossRefGoogle Scholar
Silverman, L. & Glick, D., 1969. The reactivity and staining of tissue proteins with phosphotungstic acid. Journal of Cell Biology, 40, 761767.Google Scholar
Smith, D. M. & Dall, W., 1982. Blood protein, blood volume and extracellular space relationships in two Penaeus spp. (Decapoda: Crustacea). Journal of Experimental Marine Biology and Ecology, 63, 115.CrossRefGoogle Scholar
Tranzer, J. P., 1965. Utilisation de citrate de plomb pour la mise en evidence de la phosphatase alcaline au microscope electronique. Journal de Microscopie, 4, 409414.Google Scholar
Travis, D. F., 1955. The moulting cycle of the spiny lobster Panulirus argus Latreille. II. Pre-ecdysial histological and histochemical changes in the hepatopancreas and integumental tissues. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 108, 88112.CrossRefGoogle Scholar
Travis, D. F., 1957. The molting cycle of the spiny lobster Panulirus argus Latreille. IV. Post-ecdysial histological and histochemical changes in the hepatopancreas and integumental tissues. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 113, 451479.CrossRefGoogle Scholar