Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T21:19:04.042Z Has data issue: false hasContentIssue false

Jakoba libera (Ruinen, 1938), a heterotrophic flagellate from deep oceanic sediments

Published online by Cambridge University Press:  11 May 2009

David J. Patterson
Affiliation:
Department of Zoology, University of Bristol, Bristol, BS8 1UG

Abstract

An account is given of a flagellated protist isolated from Atlantic sediments at a depth of 1500 m. The organism forms part of the microbial food web by consuming suspended bacteria. The organism was originally described by Ruinen as Cryptobia libera. On the basis of its ultrastructure, assignment to the genus Cryptobia is regarded as inappropriate, and Jakoba is proposed as a new generic vehicle.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, A., Larsson, U., & Hagstrom, A., 1986. Size-selective grazing by a microflagellate on pelagic bacteria. Marine Ecology - Progress Series, 33, 5157.CrossRefGoogle Scholar
Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, La., Thingstad, F., 1983. The ecological role of water column microbes in the sea. Marine Ecology Progress Series, 10, 257263.Google Scholar
Bak, R. P. M. & Nieuwland, G., 1990. Seasonal fluctuation in benthic protozoan populations at different depths in marine sediments. Netherlands Journal of Sea Research, 24, 3744.CrossRefGoogle Scholar
Balamuth, W., Bradbury, P. C. & Schuster, F.L., 1983. Ultrastructure of the amoeboflagellate Tetramitus rostratus. Journal of Protozoology, 30, 445455.Google Scholar
Barnett, P. R. O., Watson, J. & Connelly, D., 1984. A multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sediments. Oceanologica Ada, 7, 399408.Google Scholar
Biddanda, B. A., 1988. Microbial aggregation of phytoplankton-derived detritus in sea water. II. Microbial metabolism. Marine Ecology - Progress Series, 42, 8995.CrossRefGoogle Scholar
Biddanda, B. A. & Pomeroy, L.A., 1988. Microbial aggregation of phytoplankton-derived detritus in sea water. I. Microbial succession. Marine Ecology - Progress Series, 42, 7988.Google Scholar
Broers, C. A. M., Brugerolle, G., Stumm, C. K. & Vogels, G.D., 1990. Psalteriomonas lanterna gen. nov., sp. nov., a free-living amoeboflagellate isolated from freshwater sapropel. European Journal ofProtistology, in press.Google Scholar
Brugerolle, G., Lorn, J., Nohynkova, E. & Joyon, L., 1979. Comparaison et evolution des structures cellulaires chez plusiers especes de bodonides et cryptobiides appartenant aux genres Bodo, Cryptobia, et Trypanoplasma (Kinetoplastida, Mastigophora). Protistologica, 15, 197221.Google Scholar
Caron, D. A., 1987. Grazing of attached bacteria by heterotrophic microflagellates. Microbial Ecology, 13, 203218.CrossRefGoogle ScholarPubMed
Caron, D. A., Davis, P. G., Madin, L. P. & Sieburth, J. McN., 1982. Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. Science, New York, 218, 795796.Google Scholar
Cho, B. C. & Azam, F. 1988. Major role of bacteria in biogeochemical fluxes in the ocean's interior. Nature, London, 332, 441443.CrossRefGoogle Scholar
Curds, C. R. 1975. Protozoa. In Ecological Aspects of Used-water Treatment, vol. 1. (ed. C.R., Curds and H.A., Hawkes), pp 203268. London: Academic Press.Google Scholar
Current, W. L., 1980. Cryptobia sp. in the snail Triadopsis multilineata (Say): fine structure of attached flagellates and their mode of attachment to the spermatheca. Journal of Protozoology, 27, 278287.CrossRefGoogle Scholar
Davoll, P. J. & Silver, M. W., 1986. Marine snow aggregates: life history sequence and microbial community of abandoned larvacean houses from Monterey Bay, California. Marine Ecology -Progress Series, 33, 111120.CrossRefGoogle Scholar
Ducklow, H. W., 1983. Production and fate of bacteria in the oceans. Bioscience, 33, 494501.CrossRefGoogle Scholar
Fenchel, T., 1982. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as consumers of bacteria. Marine Ecology - Progress Series, 9, 3542.CrossRefGoogle Scholar
Fenchel, T., 1986. The ecology of heterotrophic flagellates. Advances in Microbial Ecology, 9, 5797.CrossRefGoogle Scholar
Fenchel, T. & Patterson, D. J., 1986. Percolomonas cosmopolitus (Ruinen) n. gen., a new type of filter feeding flagellate from marine plankton. Journal of the Marine Biological Association of the United Kingdom, 66, 465482.Google Scholar
Fenchel, T. & Patterson, D. J., 1988. Cafeteria roenbergensis nov. gen., nov. sp., a heterotrophic microflagellate from marine plankton. Marine Microbial Food Webs, 3, 919.Google Scholar
Foissner, W., Blatterer, H. & Foissner, I. 1988. The Hemimastigophora (Hemimastix amphikineta nov. gen., nov. spec), a new protistan phylum from Gondwanian soils. European Journal of Protistology, 23, 361383.CrossRefGoogle Scholar
Goldman, J. C., 1984. Conceptual role for microaggregates in pelagic waters. Bulletin of Marine Science, 35, 462476.Google Scholar
Gooday, A. J. & Turley, Cm., 1990. Responses by benthic organisms to inputs of organic material to the ocean floor: a review. Philosophical Transactions of the Royal Society (B), in press.Google Scholar
Griessmann, K., 1913. Uber marine Flagellaten. Archiv fur Protistenkunde, 32 (year 1914), 178.Google Scholar
Karl, D. M., Knauer, G. A. & Martin, J.H., 1988. Downward flux of particulate organic matter in the ocean: a particle decomposition paradox. Nature, London, 332, 438441.Google Scholar
Lampitt, R. S., 1985. Evidence for seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension. Deep-Sea Research, 32, 885897.CrossRefGoogle Scholar
Larsen, J. & Patterson, D. J., 1990. Some flagellates (Protista) from tropical marine sediments. Journal of Natural History, in press.Google Scholar
Mitchell, G. C., Baker, J. H. and Sleigh, M.A., 1988. Feeding of a freshwater flagellate, Bodo saltans, on diverse bacteria. Journal of Protozoology, 35, 219222.Google Scholar
Paterson, W. B. & Woo, P. T. K., 1983. Electron microscopic observations of the bloodstream form of Cryptobia salmostica Katz, 1951 (Kinetoplastida: Bodonina). Journal of Protozoology, 30, 431437.CrossRefGoogle Scholar
Patterson, D. J., 1982. Photomicrography using a dedicated electronic flash. Microscopy, 34, 437442.Google Scholar
Patterson, D. J., 1989. The evolution of Protozoa. Memorias do Instituto Oswaldo Cruz, 83 (supplement 1), 580600.CrossRefGoogle Scholar
Patterson, D. J. & Brugerolle, G., 1988. The ultrastructural identity of Stephanopogon apogon and the relatedness of this genus to other kinds of protists. European Journal ofProtistology, 23, 279290.Google Scholar
Patterson, D. J. & Fenchel, T. 1985. Insights into the evolution of heliozoa (Protozoa, Sarcodina) as provided by ultrastructural studies on a new species of flagellate from the genus Pteridomonas. Biological Journal of the Linnaean Society, 34, 381403Google Scholar
Patterson, D. J. & Fenchel, T., 1990. Massisteria marina (Larsen & Patterson 1990), a widespread and abundant bacterivorous protist associated with marine detritus. Marine Ecology - Progress Series, in press.CrossRefGoogle Scholar
Patterson, D. J., Larsen, J. & Corliss, J.O., 1989. The ecology of heterotrophic flagellates and ciliates living in marine sediments. Progress in Protistology, 3, 185277.Google Scholar
Ruinen, J., 1938. Notizen Über Salzflagellaten. II. liber die Verbreitung der Salzflagellaten. Archiv fur Protistenkunde, 90, 210258.Google Scholar
Sherr, B. F., Sherr, E. B. & Berman, T., 1982. Decomposition of organic detritus: a selective role for microflagellate protozoa. Limnology and Oceanography, 27, 765769.Google Scholar
Sleigh, M. A., 1988. Flagellar root maps allow speculative comparisons of root patterns and their ontogeny. Biosystems, 21, 277282.Google Scholar
Soares, M. J., Brazil, R. P., Tanuri, A. & De Souza, W., 1986. Some ultrastructural aspects of Crithidia guilhermi n. sp. isolated from Phaenicia cuprina (Diptera: Calliphoridae). Canadian Journal of Zoology, 64, 28372842.Google Scholar
Sogin, M. L., Gunderson, J. H., Elwood, H. J., Alonso, R. A. & Peattie, D. A., 1989. Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science, New York, 243, 7577.Google Scholar
Turley, C. M. & Lochte, K., 1990. Microbial response to the input of fresh detritus to the deep-sea bed. In Global and Planetary Change (ed. L., Labeyrie and C., Jeandel), in press. Amsterdam: Elsevier.Google Scholar
Turley, Cm., Lochte, K. & Patterson, D.J., 1988. A barophilic flagellate isolated from 4500 m in the mid-North Atlantic. Deep-Sea Research, 35, 10791092.Google Scholar
Vors, N., 1988. Discocelis saleuta gen. nov. et sp. nov. (Protista incertae sedis) - a new heterotrophic marine flagellate. European Journal of Protistology, 23, 297308.Google Scholar
Wiebe, W. J. & Pomeroy, L.R., 1972. Microorganisms and their association with aggregates and detritus in the sea: a microscopic study. Memorie dell istituto Italiano di Idrobiologia dott. Marco de Marchi, 29 (supplement), 325352.Google Scholar