Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T16:30:33.808Z Has data issue: false hasContentIssue false

Isotopic tracing of sediment components assimilated by epibiontic juveniles of Holothuria scabra (Holothuroidea)

Published online by Cambridge University Press:  17 June 2014

T. Plotieau
Affiliation:
Biology of Marine Organisms and Biomimetics, University of Mons, B-7000 Mons, Belgium Haute Ecole Provinciale de Hainaut—Condorcet, B-7000 Mons, Belgium
G. Lepoint
Affiliation:
Oceanology Laboratory, University of Liège, B6 Sart Tilman, B-4000 Liège, Belgium
T. Lavitra
Affiliation:
Polyaquaculture Research Unit, IHSM, University of Toliara, 601 Toliara, Madagascar
I. Eeckhaut*
Affiliation:
Biology of Marine Organisms and Biomimetics, University of Mons, B-7000 Mons, Belgium Polyaquaculture Research Unit, IHSM, University of Toliara, 601 Toliara, Madagascar
*
Correspondence should be addressed to: I. Eeckhaut, Biology of Marine Organisms and Biomimetics, University of Mons, B-7000 Mons, Belgium email: [email protected]; Tel: 003265373470

Abstract

Despite Holothuria scabra's wide distribution and status as one of the best candidates for sustaining the development of tropical sea cucumber aquaculture, very few data are available regarding the organic fraction it assimilates in practice. In this paper we report experimental results where H. scabra's diet was supplemented with various 15N-labelled organic fractions of sediment. We used juveniles weighing between 38 and 88 mg at the beginning of the experiment (~2 cm long and 30 days old). Their growth was measured over a four-week period and their 15N composition recorded. The results showed that H. scabra juveniles assimilated all added organic components from both dissolved and particulate fractions of the sediment. Bacteria seem to be an important food source for juveniles, even more so than microphytobenthos (diatoms).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adamse, A.D. (1970) Some characteristics of arthrobacters from a dairy waste activated sludge. Water Research 4, 797803.CrossRefGoogle Scholar
Baross, J. and Liston, J. (1970) Occurrence of Vibrio parahaemolyticus and related hemolytic Vibrios in marine environments of Washington State. Applied and Environmental Microbiology 20, 179186.CrossRefGoogle ScholarPubMed
Baird, B.H. and Thistle, D. (1986) Uptake of bacterial extracellular polymer by a deposit-feeding holothurian (Isostichopus badionotus). Marine Biology 92, 183187.CrossRefGoogle Scholar
Belbachir, N.E., Mezali, K. and Soualili, D.L. (in press) Selective feeding behavior in some aspidochirotida holothurians (Echinodermata: Holothuroidea) of Stidia, Mostaganem (Algeria). Beche-de-Mer Information Bulletin.Google Scholar
Eeckhaut, I., Lavitra, T., Rasolofonirina, R., Rabenevanana, M.W., Gildas, P. and Jangoux, M. (2009) Madagascar Holothurie SA: la première entreprise commerciale axée sur l'aquaculture des holothuries à Madagascar. Beche-de-mer Information Bulletin 28, 2223.Google Scholar
Fenchel, T. (1972) Aspects of decomposer food chains in marine benthos. Verhandlungen der deutschen Zoologischen Gesellschaft 65, 1423.Google Scholar
Gao, F., Xu, Q., Yang, H. (2011) Seasonal biochemical changes in composition of body wall tissues of sea cucumber Apostichopus japonicus. Chinese Journal of Oceanology and Limnology 29, 252260.CrossRefGoogle Scholar
Lavitra, T., Rasolofonirina, R., Grosjean, P., Jangoux, M. and Eeckhaut, I. (2009) The effect of food quality and rearing density on the growth and survival of epibenthic juveniles of the sea cucumber Holothuria scabra. Western Indian Ocean Journal of Marine Science 8, 8795.Google Scholar
Lopez, G.R. and Levinton, S.L. (1987) Ecology of deposit feeding-animals in marine sediments. Quarterly Review of Biology 62, 235259.CrossRefGoogle Scholar
Malmcrona-Friberg, K., Tunlid, A., Mardén, P., Kjelleberg, S. and Odham, G. (1986) Chemical changes in cell envelope and poly-β-hydroxybutyrate during short term starvation of a marine bacterial isolate. Archives of Microbiologia 144, 340345.CrossRefGoogle Scholar
Mary, A., Mary, V., Rittschof, D. and Nagabhushanam, R. (1993) Bacterial–barnacle interaction: potential of using juncellins and antibiotics to alter structure of bacterial communities. Journal of Chemical Ecology 10, 21552167.CrossRefGoogle Scholar
Massin, C. (1982) Effects of feeding on the environment: Holothuroidea. In Jangoux, M. and Lawrence, J.M. (eds) Echinoderm nutrition. Rotterdam: A.A. Balkema, pp. 493497.Google Scholar
Mercier, A., Battaglene, S.C. and Hamel, J.-F. (1999) Daily burrowing cycle and feeding activity of juvenile sea cucumbers Holothuria scabra in response to environmental factors. Journal of Experimental Marine Biology and Ecology 239, 125156.CrossRefGoogle Scholar
Mezali, K. and Soualili, D.L. (2013) The ability of holothurians to select sediment particles and organic matter. Beche-de-Mer Information Bulletin, 33, 3843.Google Scholar
Newell, R. (1965) The role of detritus in the nutrition of two marine deposit feeders, the prosobranch Hydrobia ulvae and the bivalve Macoma balthica. Proceedings of the Zoological Society, London, 144, 2545.CrossRefGoogle Scholar
Odum, W.E. (1971) Pathways of energy flow in a South Florida estuary. Sea Grant Technical Bulletin No. 7. Miami, FL: University of Miami Sea Grant Program.Google Scholar
Plotieau, T., Lavitra, T., Gillan, D.C. and Eeckhaut, I. (2013a) Bacterial diversity of the sediments transiting through the digestive tube of Holothuria scabra (Holothuroidea; Echinodermata). Marine Biology 160, 30873101.CrossRefGoogle Scholar
Plotieau, T., Baele, J.M., Vaucher, R., Hasler, A., Kounad, D. and Eeckhaut, I. (2013b) Analysis of the impact of Holothuria scabra intensive farming on sediment. Cahiers de Biologie Marine 54, 703711.Google Scholar
Schleifer, K.H. and Kandler, O. (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriological Reviews 36, 407477.CrossRefGoogle ScholarPubMed
Slater, M.J. and Jeffs, A.G. (2010) Do benthic sediment characteristics explain the distribution of juveniles of the deposit-feeding sea cucumber Austrolostichopus mollis? Journal of Sea Research 64, 241249.CrossRefGoogle Scholar
Taddei, D. (2006) Transfert de matière et d'énergie dans les sédiments d'un complexe récifal anthropisé (Ile de la réunion, Océan Indien). PhD thesis. Presse de l'université de la Réunion, FranceGoogle Scholar
Uthicke, S. (1999) Sediment bioturbation and impact of feeding activity of Holothuria (Halodeima) atra and Stichopus chloronotus, two sediment feeding holothurians, at Lizard island, Great Barrier Reef. Bulletin of Marine Science 64, 129141.Google Scholar
Uthicke, S. and Karez, R. (1999) Sediment patch selectivity in tropical sea cucumbers (Holothurioidea: Aspidochirotida) analysed with multiple choice experiments. Journal of Experimental Marine Biology and Ecology 236, 6987.CrossRefGoogle Scholar
Von Wirén, N. and Merrick, M. (2004) Regulation and function of ammonium carriers in bacteria, fungi and plants. Topics in Current Genetics 9, 95120.CrossRefGoogle Scholar
Ward-Rainey, N., Rainey, F.A. and Stackebrandt, E. (1996) A study of the bacterial flora associated with Holothuria atra. Journal of Experimental Marine Biology and Ecology 203, 1126.CrossRefGoogle Scholar
Wolkenhauer, S.M., Uthicke, S., Burridge, C., Skewes, T. and Pitcher, R. (2010) The ecological role of Holothuria scabra (Echinodermata: Holothuroidea) within subtropical seagrass. Journal of the Marine Biological Association of the United Kingdom 90, 215223.CrossRefGoogle Scholar
Yakimov, M.M., Deanro, R., Genovese, M., Cappello, S., D'Auria, G.Chernikova, T.N., Timmis, K.N., Golyshin, P.N. and Giluliano, L. (2005) Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environmental Microbiology 9, 14261451.CrossRefGoogle Scholar
Yingst, J. (1976) The utilization of organic matter in shallow marine sediments by an epibenthic deposit-feeding holothurian. Journal of Experimental Marine Biology and Ecology 23, 5569.CrossRefGoogle Scholar