Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T19:35:10.395Z Has data issue: false hasContentIssue false

Impact of harmful algal blooms (Dinophysis acuminata) on the immune system of oysters and mussels from Santa Catarina, Brazil

Published online by Cambridge University Press:  01 December 2014

Erik Simões
Affiliation:
Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
Renato Campos Vieira
Affiliation:
Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
Mathias Alberto Schramm
Affiliation:
Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina, Campus Itajaí, Rua Tijucas 55, 88301-360 Itajaí, SC, Brazil
Danielle Ferraz Mello
Affiliation:
Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
Vitor De Almeida Pontinha
Affiliation:
Departamento de Aquicultura, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
Patrícia Mirella da Silva*
Affiliation:
Departamento de Biologia Molecular, Universidade Federal da Paraíba, Campus I, 58059-900João Pessoa, PB, Brazil
Margherita Anna Barracco
Affiliation:
Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
*
Correspondence should be addressed to: P.M. da Silva, Departamento de Biologia Molecular, Universidade Federal da Paraíba, Centro de Ciências Exatas e da Natureza, Jardim Universitário s/n, Bairro Castelo Branco, CEP 58051-900 João Pessoa, PB, Brazil email: [email protected]

Abstract

Blooms of the harmful alga Dinophysis acuminata, which produces okadaic acid (OA), are becoming recurrent in Santa Catarina coast, where most of the shellfish marine farms in Brazil are located. We evaluated the impact of D. acuminata blooms on various haemato-immunological parameters and on tissue integrity of cultivated oysters (Crassostrea gigas) and mussels (Perna perna). Animals were sampled during two natural algal blooms, one at Praia Alegre (PA: 2950 cells l−1) and the other at Praia de Zimbros (PZ: 4150 cells l−1). Control animals were sampled at the same sites, 30 days after the end of the bloom. The assayed parameters were: total (THC) and differential (DHC) haemocyte counts, percentage of apoptotic haemocytes (AH), phenoloxidase activity (PO), agglutinating titre (AT) and total protein concentration in haemolymph (PC). Histological analyses were carried out in oysters from PZ. The results showed that some immune parameters were modulated during the toxic blooms, but not in a consistent manner, especially in mussels that accumulated more OA (10×) than oysters. For example, mussel THC decreased significantly (54%) during the bloom at PA, whereas it augmented markedly (64%) at PZ. PO activity was significantly altered by the algal blooms in both bivalve species, while PC increased significantly (66%) only in mussels from PZ bloom. The other parameters (DHC, AH and AT) did not vary in both bivalve species. Histological analyses showed an intense haemocytic infiltration throughout the oyster digestive epithelium, particularly into the stomach lumen during the algal bloom.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aladaileh, S., Nair, S.V. and Raftos, D.A. (2007) Induction of phenoloxidase and other immunological activities in Sydney rock oysters challenged with microbial pathogen-associate molecular patterns. Fish and Shellfish Immunology 23, 11961208.CrossRefGoogle ScholarPubMed
Ascencio, F., Estrada, N., Romero, M.D., Campa-Cordova, A. and Luna, A. (2007) Effects of the toxic dinoflagellate, Gymnodinium catenatum on hydrolytic and antioxidant enzymes, in tissues of the giant lions-paw scallop Nodipecten subnodosus . Comparative Biochemistry and Physiology – Part C: Toxicology and Pharmacology 146, 502510.Google Scholar
Auffret, M., Rousseau, S., Boutet, I., Tanguy, A., Baron, J., Moraga, D. and Duchemin, M. (2006) A multiparametric approach for monitoring immunotoxic responses in mussels from contaminated sites in Western Mediterranean. Ecotoxicology and Environmental Safety 63, 393405.CrossRefGoogle Scholar
Biolojan, C. and Takai, A. (1988) Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochemical Journal 256, 283290.Google Scholar
Bradford, M.M. (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle Scholar
Bravo, I., Fernandez, M.L., Ramilo, I. and Martinez, A. (2001) Toxin composition of the toxic dinoflagellate Prorocentrum lima isolated from different locations along the Galician coast (NW Spain). Toxicon 39, 15371545.Google Scholar
Bricelj, V.M., Ford, S.E., Lambert, C., Barbou, A. and Paillard, C. (2011) Effects of toxic Alexandrium tamarense on behavior, hemocyte responses and development of brown ring disease in Manila clams. Marine Ecology Progress Series 430, 3548.Google Scholar
Carvalho Pinto-Silva, C.R., Creppy, E.E. and Matias, W.G. (2005) Micronucleus test in mussels Perna perna fed with the toxic dinoflagellate Prorocentrum lima . Archives of Toxicology 79, 422426.Google Scholar
Carvalho Pinto-Silva, C.R., Ferreira, J.F., Costa, R.H.R., Belli Filho, P., Creppy, E.E. and Matias, W.G. (2003) Micronucleus induction in mussels exposed to okadaic acid. Toxicon 41, 9397.CrossRefGoogle ScholarPubMed
Cerenius, L., Kawabata, S.I., Lee, B.L., Nonaka, M. and Soderhall, K. (2010) Proteolytic cascades and their involvement in invertebrate immunity. Trends in Biochemical Sciences 35, 575583.CrossRefGoogle ScholarPubMed
Chikalovets, I.V., Chernikov, O.V., Shekhova, E.A., Molchanova, V.I. and Lukyanov, P.A. (2010) Changes in the level of lectins in the mantle of the mussel Mytilus trossulus in response to anthropogenic contaminants. Russian Journal of Marine Biology 36, 7074.Google Scholar
da Silva, P.M., Hegaret, H., Lambert, C., Wikfors, G.H., Le Goic, N., Shumway, S.E. and Soudant, P. (2008) Immunological responses of the Manila clam (Ruditapes philippinarum) with varying parasite (Perkinsus olseni) burden, during a long-term exposure to the harmful alga, Karenia selliformis, and possible interactions. Toxicon 51, 563573.Google Scholar
Escobedo-Lozano, A.Y., Estrada, N., Ascencio, F., Contreras, G. and Alonso-Rodriguez, R. (2012) Accumulation, biotransformation, histopathology and paralysis in the Pacific calico scallop Argopecten ventricosus by the paralyzing toxins of the dinoflagellate Gymnodinium catenatum . Marine Drugs 10, 10441065.CrossRefGoogle ScholarPubMed
Estrada, N., Rodríguez-Jaramillo, C., Contreras, G. and Ascencio, F. (2010) Effects of induced paralysis on hemocytes and tissues of the giant lions-paw scallop by paralyzing shellfish poison. Marine Biology 157, 14011415.CrossRefGoogle Scholar
Fujiki, H. and Suganuma, M. (2009) Carcinogenic aspects of protein phosphatase 1 and 2A inhibitors. In Fusetani, N. and Kem, W. (eds) Marine toxins as research tools. Berlin: Springer, pp. 221254.Google Scholar
Galimany, E., Sunila, I., Hegaret, H., Ramon, M. and Wikfors, G.H. (2008a) Experimental exposure of the blue mussel (Mytilus edulis, L.) to the toxic dinoflagellate Alexandrium fundyense: histopathology, immune responses, and recovery. Harmful Algae 7, 702711.Google Scholar
Galimany, E., Sunila, I., Hegaret, H., Ramon, M. and Wikfors, G.H. (2008b) Pathology and immune response of the blue mussel (Mytilus edulis L.) after an exposure to the harmful dinoflagellate Prorocentrum minimum . Harmful Algae 7, 630638.Google Scholar
Gonzalez-Romero, R., Rivera-Casas, C., Fernandez-Tajes, J., Ausio, J., Mendez, J. and Eirin-Lopez, J.M. (2012) Chromatin specialization in bivalve molluscs: a leap forward for the evaluation of okadaic acid genotoxicity in the marine environment. Comparative Biochemistry and Physiology – Part C: Toxicology and Pharmacology 155, 175181.Google Scholar
Haberkorn, H., Lambert, C., Le Goic, N., Gueguen, M., Moal, J., Palacios, E., Lassus, P. and Soudant, P. (2010a) Effects of Alexandrium minutum exposure upon physiological and hematological variables of diploid and triploid oysters, Crassostrea gigas . Aquatic Toxicology 97, 96108.Google Scholar
Haberkorn, H., Lambert, C., Le Goic, N., Moal, J., Suquet, M., Gueguen, M., Sunila, I. and Soudant, P. (2010b) Effects of Alexandrium minutum exposure on nutrition-related processes and reproductive output in oysters Crassostrea gigas . Harmful Algae 9, 427439.CrossRefGoogle Scholar
Hégaret, H., da Silva, P.M., Sunila, I., Shumway, S.E., Dixon, M.S., Alix, J., Wikfors, G.H. and Soudant, P. (2009) Perkinsosis in the Manila clam Ruditapes philippinarum affects responses to the harmful-alga, Prorocentrum minimum . Journal of Experimental Marine Biology and Ecology 371, 112120.CrossRefGoogle Scholar
Hégaret, H., da Silva, P.M., Wikfors, G.H., Haberkorn, H., Shumway, S.E. and Soudant, P. (2011) In vitro interactions between several species of harmful algae and haemocytes of bivalve molluscs. Cell Biology and Toxicology 27, 249266.CrossRefGoogle ScholarPubMed
Hégaret, H., da Silva, P.M., Wikfors, G.H., Lambert, C., De Bettignies, T., Shumway, S.E. and Soudant, P. (2007a) Hemocyte responses of Manila clams, Ruditapes philippinarum, with varying parasite, Perkinsus olseni, severity to toxic-algal exposures. Aquatic Toxicology 84, 469479.Google Scholar
Hégaret, H., Smolowitz, R.M., Sunila, I., Shumway, S.E., Alix, J., Dixon, M. and Wikfors, G.H. (2010) Combined effects of a parasite, QPX, and the harmful-alga, Prorocentrum minimum on northern quahogs, Mercenaria mercenaria . Marine Environmental Research 69, 337344.Google Scholar
Hégaret, H. and Wikfors, G.H. (2005a) Effects of natural and field-simulated blooms of the dinoflagellate Prorocentrum minimum upon hemocytes of eastern oysters, Crassostrea virginica, from two different populations. Harmful Algae 4, 201209.CrossRefGoogle Scholar
Hégaret, H. and Wikfors, G.H. (2005b) Time-dependent changes in hemocytes of eastern oysters, Crassostrea virginica, and northern bay scallops, Argopecten irradians irradians, exposed to a cultured strain of Prorocentrum minimum . Harmful Algae 4, 187199.Google Scholar
Hégaret, H., Wikfors, G.H., Soudant, P., Lambert, C., Shumway, S.E., Berard, J.B. and Lassus, P. (2007b) Toxic dinoflagellates (Alexandrium fundyense and A. catenella) have minimal apparent effects on oyster hemocytes. Marine Biology 152, 441447.CrossRefGoogle Scholar
Hine, P.M. (1999) The inter-relationships of bivalve haemocytes. Fish and Shellfish Immunology 9, 367385.Google Scholar
Imojen, P., Handlinger, J.H. and Hallegraeff, G.M. (2005) Histopathology in Pacific oyster (Crassostrea gigas) spat caused by the dinoflagellate Prorocentrum rhathymum . Harmful Algae 4, 6174.Google Scholar
Kacem, I., Bouaïcha, N. and Hajjem, B. (2010) Comparison of okadaic acid profiles in mussels and oysters collected in Mediterranean Lagoon, Tunisia. International Journal of Biology 2, 238245.Google Scholar
Lago, J., Santaclara, F., Vieites, J.M. and Cabado, A.G. (2005) Collapse of mitochondrial membrane potential and caspases activation are early events in okadaic acid-treated Caco-2 cells. Toxicon 46, 579586.Google Scholar
Landsberg, J.H. (2002) The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science 10, 113390.CrossRefGoogle Scholar
Lee, J.S., Igarashi, T., Fraga, S., Dahl, E., Hovgaard, P. and Yasumoto, T. (1989) Determination of diarrhetic shellfish toxins in various dinoflagellate species. Journal of Applied Phycology 1, 147152.Google Scholar
Lindegarth, S., Torgersen, T., Lundve, B. and Sandvik, M. (2009) Differential retention of okadaic acid (OA) group toxins and pectenotoxins (PTX) in the blue mussel, Mytilus edulis (L.) and European flat oyster, Ostrea edulis (L.). Journal of Shellfish Research 28, 313323.Google Scholar
Liu, H., Jiravanichpaisal, P., Cerenius, L., Lee, B.L., Söderhäll, I. and Söderhäll, K. (2007) Phenoloxidase is an important component of the defense against Aeromonas hydrophila infection in a crustacean, Pacifastacus leniusculus . Journal of Biological Chemistry 282, 3359333598.CrossRefGoogle Scholar
Malagoli, D., Casarini, L. and Ottaviani, E. (2008) Effects of the marine toxins okadaic acid and palytoxin on mussel phagocytosis. Fish and Shellfish Immunology 24, 180186.Google Scholar
Marcheselli, M., Azzoni, P. and Mauri, M. (2011) Novel antifouling agent-zinc pyrithione: stress induction and genotoxicity to the marine mussel Mytilus galloprovincialis . Aquatic Toxicology 102, 3947.CrossRefGoogle Scholar
Mello, D.F., da Silva, P.M., Barracco, M.A., Soudant, P. and Hégaret, H. (2013) Effects of the dinoflagellate Alexandrium minutum and its toxin (saxitoxin) on the functional activity and gene expression of Crassostrea gigas hemocytes. Harmful Algae 26, 4551.Google Scholar
Mello, D.F., Proença, L.A.O. and Barracco, M.A. (2010) Comparative study of various immune parameters in three bivalve species during a natural bloom of Dinophysis acuminata in Santa Catarina Island, Brazil. Toxins 2, 11661178.Google Scholar
Prado-Alvarez, M., Florez-Barros, F., Mendez, J. and Fernandez-Tajes, J. (2013) Effect of okadaic acid on carpet shell clam (Ruditapes decussatus) haemocytes by in vitro exposure and harmful algal bloom simulation assays. Cell Biology and Toxicology 29, 189197.Google Scholar
Prado-Alvarez, M., Florez-Barros, F., Sexto-Iglesias, A., Mendez, J. and Fernandez-Tajes, J. (2012) Effects of okadaic acid on haemocytes from Mytilus galloprovincialis: a comparison between field and laboratory studies. Marine Environmental Research 81, 9093.CrossRefGoogle ScholarPubMed
Proença, L.A.O., Schramm, M.A., Tamanaha, M.S. and Alves, T.P. (2007) Diarrhoetic shellfish poisoning (DSP) outbreak in subtropical Southwest Atlantic. Harmful Algal News 33, 1920.Google Scholar
Reizopoulou, S., Strogyloudi, E., Giannakourou, A., Pagou, K., Hatzianestis, L., Pyrgaki, C. and Graneli, E. (2008) Okadaic acid accumulation in macrofilter feeders subjected to natural blooms of Dinophysis acuminata . Harmful Algae 7, 228234.Google Scholar
Roch, P. (1999) Defense mechanisms and disease prevention in farmed marine invertebrates. Aquaculture 172, 125145.CrossRefGoogle Scholar
Schleder, D.D., Kayser, M., Suhnel, S., Ferreira, J.F., Rupp, G.S. and Barracco, M.A. (2008) Evaluation of hemato-immunological parameters during the reproductive cycle of the scallop Nodipecten nodosus in association with a carotenoid-enriched diet. Aquaculture 280, 256263.Google Scholar
Schramm, M.A. and Proença, L.A.O. (2008) Monitoramento de algas nocivas e ficotoxinas. Panorama da Aquicultura 18, 4855.Google Scholar
Shumway, S.E. (1990) A review of the effects of algal blooms on shellfish and aquaculture. Journal of the World Aquaculture Society 21, 65104.CrossRefGoogle Scholar
Söderhäll, K. and Häll, L. (1984) Lipopolysaccharide-induced activation of prophenoloxidase activating system in crayfish hemocyte lysate. Biochimica et Biophysica Acta 797, 99104.Google Scholar
Sokolova, I.M., Evans, S. and Hughes, F.M. (2004) Cadmium-induced apoptosis in oyster hemocytes involves disturbance of cellular energy balance but no mitochondrial permeability transition. Journal of Experimental Biology 207, 33693380.Google Scholar
Sokolova, I.M., Foster, B., Grewal, S., Graves, O. and Hughes, F.M. (2011) Copper exposure affects hemocyte apoptosis and Perkinsus marinus infection in eastern oysters Crassostrea virginica (Gmelin). Fish and Shellfish Immunology 31, 341349.Google Scholar
Song, X., Zhang, H., Zhao, J., Wang, L., Qiu, L., Mu, C., Liu, X. and Song, L. (2010) An immune responsive multidomain galectin from bay scallop Argopectens irradians . Fish and Shellfish Immunology 28, 326332.Google Scholar
Svensson, S. and Förlin, L. (1998) Intracellular effects of okadaic acid in the blue mussel Mytilus edulis, and rainbow trout Oncorhynchus mykiss . Marine Environmental Research 46, 449452.CrossRefGoogle Scholar
Thiagarajan, R., Gopalakrishnan, S. and Thilagam, H. (2006) Immunomodulation in the marine green mussel Perna viridis exposed to sub-lethal concentrations of Cu and Hg. Archives of Environmental Contamination and Toxicology 51, 392399.Google Scholar
Utermöhl, H. (1958) Zur vervollkommung der quantitativen phytoplankton-methodic. Mitteilungen. Internationale Vereiningung für Theoretische und Angewandte Limnologie 9, 138.Google Scholar
Valdiglesias, V., Mendez, J., Pasaro, E., Cemeli, E., Anderson, D. and Laffon, B. (2010) Assessment of okadaic acid effects on cytotoxicity, DNA damage and DNA repair in human cells. Mutation Research 689, 7479.Google Scholar
Vale, P. (2004) Differential dynamics of dinophysistoxins and pectenotoxins between blue mussel and common cockle: a phenomenon originating from the complex toxin profile of Dinophysis acuta . Toxicon 44, 123134.Google Scholar
Villar-González, A., Rodríguez-Velasco, M.L. and Botana, L.M. (2008) Pre-validación de un método de cromatografía de líquidos-espectrometría de masas para el análisis simultáneo de toxinas lipofílicas. In Gilbert, J. (ed.) Avances y Tendencias en Fitoplancton Tóxico y Biotoxinas. Cartagena: Universidad Politécnica de Cartagena, pp. 295302.Google Scholar
Yasumoto, T., Murata, M., Oshima, Y., Sano, M., Matsumoto, G.K. and Clardy, J. (1985) Diarrhetic shellfish toxins. Tetrahedron 41, 10191025.CrossRefGoogle Scholar
Yasumoto, T., Oshima, Y. and Yamaguchi, M. (1978) Occurrence of a new type of shellfish poisoning in Tohoku District. Bull. Bulletin of the Japanese Society of Scientific Fisheries 44, 12491255.Google Scholar
Zhang, G., Fang, X., Guo, X., Li, L., Luo, R., Xu, F., Yang, P., Zhang, L., Wang, X., Qi, H., Xiong, Z., Que, H., Xie, Y., Holland, P.W., Paps, J., Zhu, Y., Wu, F., Chen, Y., Wang, J., Peng, C., Meng, J., Yang, L., Liu, J., Wen, B., Zhang, N., Huang, Z., Zhu, Q., Feng, Y., Mount, A., Hedgecock, D., Xu, Z., Liu, Y., Domazet-Loso, T., Du, Y., Sun, X., Zhang, S., Liu, B., Cheng, P., Jiang, X., Li, J., Fan, D., Wang, W., Fu, W., Wang, T., Wang, B., Zhang, J., Peng, Z., Li, Y., Li, N., Chen, M., He, Y., Tan, F., Song, X., Zheng, Q., Huang, R., Yang, H., Du, X., Chen, L., Yang, M., Gaffney, P.M., Wang, S., Luo, L., She, Z., Ming, Y., Huang, W., Huang, B., Zhang, Y., Qu, T., Ni, P., Miao, G., Wang, Q., Steinberg, C.E., Wang, H., Qian, L., Liu, X. and Yin, Y. (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490, 4954.Google Scholar