Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-23T19:44:42.114Z Has data issue: false hasContentIssue false

Histological study of different regions of the skin and gills in the mudskipper, Boleophthalmus boddarti with respect to their respiratory function

Published online by Cambridge University Press:  11 May 2009

N. K. Al-Kadhomiy
Affiliation:
Research Unit for Comparative Animal Respiration, University of Bristol, Woodland Road, Bristol BS8 1UG
G. M. Hughes
Affiliation:
Research Unit for Comparative Animal Respiration, University of Bristol, Woodland Road, Bristol BS8 1UG

Extract

Gills are the typical respiratory organ of fish in their usual habitat of well-aerated water. The transition from water- to air-breathing required many modifications to the structural and physiological adaptations of the gas-exchange surfaces, i.e. gill, skin, swimbladder and other accessory organs of the alimentary canal. The skin is particularly important among air-breathing fish. This histological study showed varying degrees of adaptation of parts of the skin from different body regions, paying particular attention to the water/blood barrier. The results suggest a general importance in gas exchange in the following order: gill, inner operculum, nasal, body and outer opercular skin, as indicated by increasing thickness of the water/blood barrier.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al-Kadhomiy, N. K., 1984 Vascular pathways in the gill filaments of the flounder, Platichthys flesus L. Journal of Fish Biology, 24, 105114.CrossRefGoogle Scholar
Carter, G. S., 1957. Air-breathing. In The Physiology of Fishes, vol. 1 (ed. Brown, M. E.), pp. 6579. London: Academic Press.CrossRefGoogle Scholar
Das, B. K., 1934. The habits and structure of Pseudapocryptes lanceolatus, a fish in the first stages of structural adaptation to aerial respiration. Proceedings of the Royal Society (B), 115, 422—430.Google Scholar
Graham, J. B., 1976. Respiratory adaptations of marine air-breathing fishes. In Respiration of Amphibious Vertebrates (ed. Hughes, G. M.), pp. 165187. London: Academic Press.Google Scholar
Hughes, G. M., 1966. Evolution between air and water. In Ciba Foundation Symposium on Development of the Lung (ed. De Reuck, A. V. S. and Porter, R.), pp. 6480. London: Churchill.Google Scholar
Hughes, G. M., 1972. Morphometrics of fish gills. Respiration Physiology, 14, 125.CrossRefGoogle ScholarPubMed
Hughes, G. M., 1979. Paths of blood flow through the gills of fishes-some morphometric observations. Acta morphologica, Sofia, 2, 5258.Google Scholar
Hughes, G. M. & Al-Kadhomiy, N. K., 1986. Gill morphometry of the mudskipper, Boleophthalmus boddarti. Journal of the Marine Biological Association of the United Kingdom, 66, 671682.CrossRefGoogle Scholar
Hughes, G. M. & Grimstone, A. V., 1965. The fine structure of the secondary lamellae of the gills of Gadus pollachius. Quarterly Journal of Microscopical Science, 106, 343353.Google Scholar
Hughes, G. M. & Singh, B. N., 1970. Respiration in an air-breathing fish, the climbing perch, Anabas testudineus. II. Respiratory patterns and the control of breathing. Journal of Experimental Biology, 53, 281298.CrossRefGoogle Scholar
Jakubowski, M., 1960. The structure and vascularization of the skin of the eel Anguilla anguilla (L.) and the viviparous blenny Zoarces viviparus. Acta biologica cracoviensia (sér. Zoologique), 3, 1122.Google Scholar
Jeuken, M., 1957. A Study of the Respiration of Misgurnus fossilis the Pond-loach. Thesis, University of Leiden, The Netherlands.Google Scholar
Krogh, A., 1904. Some experiments on the cutaneous respiration of vertebrate animals. Skandinavisches Archiv für Physiologie, 16, 348357.CrossRefGoogle Scholar
Laurent, P. & Dunel, S., 1976. Functional organisation of the teleost gill. I. Blood pathway. Acta zoologica, Stockholm, 57, 189209.CrossRefGoogle Scholar
Le Moigne, J., Soulier, P., Peyraud-Waitzeneggar, M. & Peyraud, C., 1986. Cutaneous and gill O2 uptake in the European eel Anguilla anguilla L. in relation to ambient P O2, 10–400 Torr. Respiration Physiology, 66, 341354.CrossRefGoogle Scholar
Mittal, A. K. & Munshi, J. S. D., 1970. Structure of the integument of a freshwater teleost, Bagarius bagarius (Ham.) (Sisoridae, Pisces). Journal of Morphology, 130, 310.CrossRefGoogle Scholar
Müller, J., 1839. Vergleichende Anatomie der Myxinoiden. III. Uber des Gefassystem. Abhandlungen der Deutschen Akademie der Wissenschafter zu Berlin, 1839, 175303.Google Scholar
Munshi, J. S. D., 1976. Gross and fine structure of the respiratory organs of air-breathing fishes. In Respiration of Amphibious Vertebrates (ed. Hughes, G. M.), pp. 73104. London: Academic Press.Google Scholar
Nonnotte, G. & Kirsch, R., 1978. Cutaneous respiration in seven sea-water teleosts. Respiration Physiology, 35, 111118.CrossRefGoogle ScholarPubMed
Poczopko, P., 1959. Changes in blood circulation in Rana esculenta L. while diving. Zoologica poloniae, 10, 2943.Google Scholar
Rauther, B., 1910. Die akzessorischen Atmungorgane der Knochenfische. Ergebnisse und Fortschritte der Zoologie, 2, 517585.Google Scholar
Reiss, J. A., 1881. Der Bau der Kiememblatter bei den Knochenfischen. Archiv für Naturgeschichte, 47, 518550.Google Scholar
Richardson, K C., Jarett, L. & Finke, E. H., 1960. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technology, 35, 313323.CrossRefGoogle ScholarPubMed
Schottle, E., 1931. Morphologie und Physiologie der Atmung bei wassers-, schlamm- und landlebenden Gobiiformes. Zeitschrift für wissenschaftliche Zoologie, 140, 1113.Google Scholar
Singh, B. N., 1976. Balance between aquatic and aerial respiration. In Respiration of Amphibious Vertebrates (ed. Hughes, G. M.), pp. 125164. London: Academic Press.Google Scholar
Steen, J. B. & Kruysse, A., 1964. The respiratory function teleost gills. Comparative Biochemistry and Physiology, 12, 127142.CrossRefGoogle Scholar
Tamura, S. O. & Moriyama, T., 1976. On morphological features of the gill of amphibious and air-breathing fishes. Bulletin of the Faculty of Fisheries, Nagasaki University, 41, 18.Google Scholar
Tamura, S. O., Morii, H. & Yuzuriha, M., 1976. Respiration of the amphibious fishes Periophthalmus cantonensis and Boleophthalmus chinensis in water and on land. Journal of Experimental Biology, 65, 97107.CrossRefGoogle ScholarPubMed
Todd, E. S. & Ebeling, A. W., 1966. Aerial respiration in the longjaw mudsucker (Gillichthys mirabilis) (Telostei: Gobiidae). Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 130, 265288.CrossRefGoogle Scholar
Tuurala, H., 1983. Structure and blood circulation of the secondary lamellae of Salmo gairdneri (Richardson) gills in relation to oxygen transfer. Academic Dissertation, University of Helsinki.Google Scholar
Van Oosten, J., 1957. The skin and scales. In The Physiology of Fishes, vol. 1 (ed. Brown, M. E.), pp. 207244. London: Academic Press.CrossRefGoogle Scholar
Vogel, W., Vogel, V. & Schlote, W., 1974. Ultrastructural study of arterio-venous anastomoses in gill filaments of Tilapia mossambica. Cell and Tissue Research, 155, 491512.CrossRefGoogle ScholarPubMed
Wu, H. W. & Kung, C. C., 1940. On the accessory respiratory organ of Monopterus javanicus. Sinensia, 11, 5967.Google Scholar