Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T23:10:00.490Z Has data issue: false hasContentIssue false

Growth rate and chemical features of the massive calcium carbonate skeleton of Petrobiona massiliana (Baeriida: Calcaronea: Calcispongiae)

Published online by Cambridge University Press:  23 November 2009

Julie Hermans*
Affiliation:
Department of Invertebrates, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000, Belgium Marine Biology Laboratory, Université libre de Bruxelles, CP 160/15, Avenue F.D. Rossevelt 50, B-1050, Belgium
Philippe Dubois
Affiliation:
Marine Biology Laboratory, Université libre de Bruxelles, CP 160/15, Avenue F.D. Rossevelt 50, B-1050, Belgium
Luc Andre
Affiliation:
Section of Petrography–Mineralogy–Geochemisty, Royal Museum of Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
Jean Vacelet
Affiliation:
Centre d'Océanologie de Marseille, Aix-Marseille Université, CNRS UMR 6540 DIMAR, Station Marine d'Endoume, rue Batterie des Lions, 13007 Marseille, France
Philippe Willenz
Affiliation:
Department of Invertebrates, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000, Belgium
*
Correspondence should be addressed to: J. Hermans, Marine Biology Laboratory, Université libre de Bruxelles, CP 160/15, Avenue F.D. Rossevelt 50, B-1050, Belgium email: [email protected]

Abstract

In addition to the spicules typically produced by sponges, about twenty hypercalcified species belonging to both classes Demospongiae and Calcispongiae secrete a massive basal calcareous skeleton composed of calcite or aragonite. Skeletal growth rates and growth mechanisms are still poorly known in those hypercalcified Calcispongiae. In situ calcein staining experimentation on the Mediterranean calcisponge Petrobiona massiliana revealed a mean annual growth rate of the massive skeleton of 236 µm/y (±90). Scanning electron microscopy (SEM) revealed that some spicules are entrapped within the massive skeleton (a solid mass forming apical crests with multidirectional growth axes) during its formation. Whole actines were observed within the massive skeleton of fractured specimens, indicating that they do not dissolve after entrapping. Calcein incorporation bands seen through epifluorescence microscopy and SEM morphological observations of the skeletal surface revealed cone shaped protuberances corresponding to active growth areas. A spatially discontinuous growth was highlighted, but the annual growth rates were similar at the tip of crests and at the bottom of depressions separating them. The skeleton of P. massiliana is composed of magnesium calcite with strontium as the main trace element. Significant differences in skeletal chemistry of specimens collected in different Mediterranean locations revealed a possible temperature dependence of Mg/Ca. Although such temperature signature exists in the massive skeleton of P. massiliana, its use as an accurate environmental recorder is limited by several factors including multidirectional and spatially discontinuous growth.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benavides, L.M. and Druffel, E.R.M. (1986) Sclerosponge growth rate as determined by 210Pb, Δ14C chronologies. Coral Reefs 4, 221224.CrossRefGoogle Scholar
Böhm, F., Joachimsky, M.M., Dullo, W.-C., Eisenhauer, A., Lehnert, H., Reitner, J. and Wörheide, G. (2000) Oxygen isotope fractionation in marine aragonite of coralline sponges. Geochimica et Cosmochimica Acta 10, 16951703.CrossRefGoogle Scholar
Calcinai, B., Arillo, A., Cerrano, C. and Bavestrello, G. (2003) Taxonomy-related differences in the excavating micro-patterns of boring sponges. Journal of the Marine Biological Association of the United Kingdom 83, 3739.CrossRefGoogle Scholar
Chave, K.E. (1954) Aspects of the biogeochemistry of magnesium 1. Calcareous marine organisms. Journal of Geology 62, 266283.CrossRefGoogle Scholar
Dustan, Ph. and Sacco, W.K. (1983) Hidden reef builders: the sclerosponges of Chalet Caribe Reef. Discovery 16, 1217.Google Scholar
Fallon, S.J., McCulloch, M. and Guilderson, Th.P. (2005) Interpreting environmental signals from the coralline sponge Astrosclera willeyana. Palaeogeography, Palaeoclimatology, Palaeoecology 228, 5869.CrossRefGoogle Scholar
Kristjánsdóttir, G.B., Lea, D.W., Jennings, A.E., Pak, D.K. and Belanger, C. (2007) New spatial Mg/Ca-temperature calibrations for three Arctic, benthic foraminifera and reconstruction of north Iceland shelf temperature for the past 4000 years. Geochemistry, Geophysics, Geosystems 8, Q03P21, doi:10.1029/2006GC001425.CrossRefGoogle Scholar
Lang, J.C., Hartman, W.D. and Land, L.S. (1975) Sclerosponges: primary framework constructors on the Jamaican deep fore-reef. Journal of Marine Research 33, 223231.Google Scholar
Lea, D.W., Mashiotta, T.A. and Spero, H.J. (1999) Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochimica et Cosmochimica Acta 63, 23692379.CrossRefGoogle Scholar
MEDAR Group (2002) MEDATLAS 2002 database. Mediterranean and Black Sea database of temperature, salinity and biochemical parameters. Climatological Atlas. Ifremer Editions.Google Scholar
Oomori, T., Kaneshima, H. and Maezato, Y. (1987) Distribution coefficient of Mg2+ ions between calcite and solution at 10–50°C. Marine Chemistry 20, 327336.CrossRefGoogle Scholar
Reitner, J. (1989) Struktur, Bildung und Diagenese der Basalskelette bei rezenten Pharetroniden unter besonderer Berücksichtigung von Petrobiona massiliana Vacelet et Lévi 1958 (Minchinellida, Porifera). Berliner Geowissenschaftliche Abhandlungen Reihe A. (Geologie und Paläontologie) 106, 343383.Google Scholar
Reitner, J. and Gautret, P. (1996) Skeletal formation in the modern but ultraconservative chaetetid sponge Spirastrella (Acanthochaetetes) wellsi (Demospongiae, Porifera). Facies 34, 193208.CrossRefGoogle Scholar
Ries, J.B. (2004) Effect of ambient Mg/Ca ratio on Mg fractionation in calcareous marine invertebrates: a record of the oceanic Mg/Ca ratio over the Phanerozoic. Geology 32, 981984.CrossRefGoogle Scholar
Rosenheim, B.E., Swart, P.K., Thorrold, S.R., Willenz, Ph., Berry, L. and Latkoczy, C. (2004) High resolution Sr/ca records in sclerosponges calibrated to temperature in situ. Geology 32, 145148.CrossRefGoogle Scholar
Rosenheim, B.E., Swart, P.K. and Thorrold, S.R. (2005) Minor and trace elements in sclerosponge Ceratoporella nicholsoni: biogenic aragonite near the inorganic endmember? Palaeogeography, Palaeoclimatology, Palaeoecology 228, 109129.CrossRefGoogle Scholar
Rosenheim, B.E., Swart, P.K. and Willenz, Ph. (2009) Calibration of sclerosponge oxygen isotope records to temperature using high-resolution δ18O data. Geochimica and Cosmochimica Acta 75, 53085319. doi:10.1016/j.gca.2009.05.047CrossRefGoogle Scholar
Spurr, A.R. (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research 26, 3143.CrossRefGoogle ScholarPubMed
Swart, P.K., Moore, M., Charles, C. and Böhm, F. (1998) Scleroponges may hold new keys to marine paleoclimates. EOS, Transactions, American Geophysical Union 79, 636638.CrossRefGoogle Scholar
Vacelet, J. (1964) Etude monographique de l'Eponge Calcaire Pharétronide de Méditerranée, Petrobiona massiliana Vacelet et Lévi. Les Pharétronides actuelles et fossiles. Recueil des Travaux de la Station Marine d'Endoume 34, 1125.Google Scholar
Vacelet, J. (1988) Indications de profondeurs données par les Spongiaires dans les milieux benthiques actuels. Géologie Méditerranéenne 15, 1326.CrossRefGoogle Scholar
Vacelet, J. (1991) Recent Calcarea with a reinforced skeleton. In Reitner, J. and Keupp, H. (eds). Fossil and Recent Sponges. Berlin: Springer-Verlag, pp. 252265.CrossRefGoogle Scholar
Willenz, Ph. and Hartman, W.D. (1985) Calcification rate of Ceratoporella nicholsoni (Porifera: Sclerospongiae): an in situ study with calcein. In Harmelin Vivien, M. and Salvat, B. (eds) Proceedings of the Fifth International Coral Reef Congress, Tahiti, Volume 5, 113118.Google Scholar
Willenz, Ph. and Hartman, W.D. (1999) Growth and regeneration rates of the calcareous skeleton of the Caribbean coralline sponge Ceratoporella nicholsoni: a long term survey. Memoirs of the Queensland Museum 44, 675685.Google Scholar
Wörheide, G. (1998) The reef cave dwelling ultraconservative coralline demosponge Astrosclera willeyana Lister 1900 from the Indo-Pacific. Micromorphology, ultrastructure, biocalcification, isotope record, taxonomy, biogeography, phylogeny. Facies 38, 188.CrossRefGoogle Scholar