Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-16T09:23:30.218Z Has data issue: false hasContentIssue false

A first look at the genetic diversity of Enteroctopus megalocyathus (Cephalopoda: Enteroctopodidae) captured by the king crab fishery in the south of Chile

Published online by Cambridge University Press:  01 September 2022

Ricardo Pliego-Cárdenas
Affiliation:
Laboratorio de Genética y Biología Molecular, Planta Experimental de Producción Acuícola, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186. Col. Vicentina. Iztapalapa, Cd. de México. C.P. 09340, México
Diana C. Schofield-Astorga
Affiliation:
Laboratorio de Genética y Genómica, Centro de Estudios del Cuaternario de Fuego Patagonia y Antártica (Centro Fundación CEQUA), Av. España 184, Punta Arenas, Chile
Eliana Paola Acuña-Gómez
Affiliation:
Laboratorio de Genética y Genómica, Centro de Estudios del Cuaternario de Fuego Patagonia y Antártica (Centro Fundación CEQUA), Av. España 184, Punta Arenas, Chile
Irene de los Angeles Barriga-Sosa*
Affiliation:
Laboratorio de Genética y Biología Molecular, Planta Experimental de Producción Acuícola, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186. Col. Vicentina. Iztapalapa, Cd. de México. C.P. 09340, México
*
Author for correspondence: Irene de los Angeles Barriga-Sosa, E-mail: [email protected]

Abstract

The octopus fishery in the southern tip of South America is based on Enteroctopus megalocyathus. It is fished on both the Atlantic and Pacific coasts, but no study has yet investigated the genetic variability of this octopus, which is frequently collected as bycatch. The genetic identity and diversity of E. megalocyathus from specimens caught by the king crab fishery along the Beagle Channel in southern Chile was investigated using sequences of three mitochondrial (16S rRNA, COI and COIII) and one nuclear (rhodopsin) markers. Homologous sequences from other Enteroctopodidae were included to determine the genetic variability of E. megalocyathus. In addition to E. megalocyathus, genetic data allowed us to identify Muusoctopus eureka, a species also collected by the king crab fishery. Enteroctopus megalocyathus was found to be genetically similar to E. zealandicus; the genetic distances between these two species were low, 0% (16S rRNA), 0.2% (COI) and 0.6% (COIII), which was also confirmed by the phylogenetic topologies, as both species are in the same clade. Enteroctopus megalocyathus has low levels of genetic diversity, as shown by haplotype and nucleotide diversity values for the mitochondrial markers (Hd = 0.06–0.32; π = 0.0001–0.003), and null diversity for the nuclear marker. All the haplotypic networks resolved with the mtDNA markers showed shared haplotypes among E. megalocyathus, E. magnificus and E. zealandicus. The low genetic diversity of E. megalocyathus can be attributed to both the geological history of South America and the life history of the species, rather than to the king crab fishery.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrera-García, MG (2016) Analisis de la variación y la estructura genética de la centolla (Lithodes santolla, Molina, 1782) en la región de Magallanes y Antartica chilena mediante marcadores moleculares (MSc thesis). Centro de Investigaciones Biológicas del Noroeste, Baja California Sur, Mexico.Google Scholar
Barriga-Sosa, I, Beckenbach, K, Hartwick, B and Smith, MJ (1995) The molecular phylogeny of five eastern North Pacific octopus species. Molecular Phylogenetics and Evolution 4, 163174.CrossRefGoogle ScholarPubMed
Barry, PD, Tamone, SL and Tallmon, DA (2013) A complex pattern of population structure in the North Pacific giant octopus Enteroctopus dofleini (Wülker, 1910). Journal of Molluscan Studies 79, 133138.CrossRefGoogle Scholar
Brock, DJ and Ward, TM (2004) Maori octopus (Octopus maorum) bycatch and southern rock lobster (Jasus edwarsii) mortality in the South Australian rock lobster fishery. Fishery Bulletin 102, 430440.Google Scholar
Ceballos, SG, Lessa, EP, Victorio, MF and Férnandez, DA (2012) Phylogeography of the sub-Antarctic notothenioid fish Eleginops maclovinus: evidence of population expansion. Marine Biology 159, 499505.CrossRefGoogle Scholar
Conners, ME and Levine, M (2017) Characteristics and discard mortality of octopus bycatch in Alaska groundfish fisheries. Fisheries Research 185, 169175.CrossRefGoogle Scholar
Darriba, D, Taboada, G, Doallo, R and Posada, D (2012) JModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.CrossRefGoogle ScholarPubMed
de Aranzamendi, MC, Bastida, R and Gardenal, CN (2011) Different evolutionary histories in two sympatric limpets of the genus Nacella (Patellogastropoda) in the South-western Atlantic coast. Marine Biology 158, 24052418.CrossRefGoogle Scholar
de Aranzamendi, MC, Bastida, R and Gardenal, CN (2014) Genetic population structure in Nacella magellanica: evidence of rapid range expansion throughout the entire species distribution on the Atlantic coast. Journal of Experimental Marine Biology and Ecology 460, 5361.CrossRefGoogle Scholar
Excoffier, L, Laval, G and Schneider, S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 4750.Google Scholar
Folmer, O, Black, M, Hoeh, W, Lutz, R and Vrijenhoek, R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google ScholarPubMed
González-Wevar, CA, Hüne, M, Rosenfeld, S, Gérard, K, Mansilla, A and Poulin, E (2016 a) Patrones de diversidad y estructura genética en especies antárticas y subantárticas de Nacella (Nacellidae). Anales Instituto Patagonia (Chile) 44, 4964.CrossRefGoogle Scholar
González-Wevar, CA, Nakano, T, Cañete, JI and Poulin, E (2016 b) Genetics, gene flow, and glaciation: the case of the South American limpet Nacella mytilina. PLoS ONE 11, e0161963.CrossRefGoogle ScholarPubMed
Goodall-Copestake, WP, Tarling, GA and Murphy, EJ (2012) On the comparison of population-level estimates of haplotype and nucleotide diversity: a case study using the genecox1 in animals. Heredity 109, 5056.CrossRefGoogle ScholarPubMed
Grant, WS (2015) Problems and cautions with sequence mismatch analysis and Bayesian skyline plots to infer historical demography. Journal of Heredity 106, 333346.CrossRefGoogle ScholarPubMed
Groeneveld, JC, Maharaj, G and Smith, CD (2006) Octopus magnificus predation and bycatch in the trap fishery for spiny lobsters Palinurus gilchristi off South Africa. Fisheries Research 79, 9096.CrossRefGoogle Scholar
Hall, TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98 NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hoang, DT, Chernomor, O, von Haeseler, A, Minh, BQ and Vinh, LS (2018) UFBOot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35, 518522.CrossRefGoogle ScholarPubMed
Hudelot, C (2000) La Systeìmatique des Octobrachia (Mollusca; Cephalopoda): une Approche Moleìculaire. PhD thesis, Museìum National d’Histoire Naturelle Paris, Paris.Google Scholar
Ibáñez, CM, Camus, PA and Rocha, FJ (2009) Diversity and distribution of cephalopod species off the coast of Chile. Marine Biology Research 5, 374384.CrossRefGoogle Scholar
Ibáñez, CM, Díaz-Santana-Iturrios, M, López Córdova, DA, Carrasco, SA, Pardo-Gandarillas, MC, Rocha, F and Vidal, EAG (2021) A phylogenetic approach to understand the evolution of reproduction in coleoid cephalopods. Molecular Phylogenetics and Evolution 155, 106972.CrossRefGoogle ScholarPubMed
Ibáñez, CM, Fenwick, M, Ritchie, PA, Carrasco, SA and Pardo-Gandarillas, MA (2020) Systematics and phylogenetic relationships of New Zealand benthic octopuses (Cephalopoda: Octopodoidea). Frontiers in Marine Science 7, 113.CrossRefGoogle Scholar
Ibáñez, CM, Pardo-Gandarillas, MC, Peña, F, Gleadall, IG, Poulin, E and Sellanes, J (2016) Phylogeny and biogeography of Muusoctopus (Cephalopoda: Enteroctopodidae). Zoologica Scripta 45, 494503.CrossRefGoogle Scholar
IFOP, (2019). Programa de seguimiento de las principales pesquerías nacionales, año 2019. Pesquería de crustáceos del Archipiélago Juan Fernández. Subsecretaria de Economia y EMT. Julio 2020.Google Scholar
Kemppainen, P, Panova, M, Hollander, M and Johanneson, K (2009) Complete lack of mitochondrial divergence between two species of NE Atlantic marine intertidal gastropods. Journal of Evolutionary Biology 22, 20002011.CrossRefGoogle ScholarPubMed
Kumar, S, Stecher, G, Li, M, Knyaz, C and Tamura, K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35, 15471549.CrossRefGoogle ScholarPubMed
Norman, MD, Finn, JK and Hochberg, FG (2014) Family Octopodidae. In Jereb, P, Roper, CFE, Norman, MD and Finn, JK (eds), Cephalopods of the World. An Annotated and Illustrated Catalogue of Cephalopod Species Known to Date. Volume 3. Octopods and Vampire Squids. Rome: FAO, pp. 36215.Google Scholar
Ortiz, N and , ME (2019) Intertidal fishery of the Patagonian red octopus Enteroctopus megalocyathus (Gould, 1852): reproductive status and catch composition in the North of San Jorge Gulf (Patagonian Atlantic Coast). Journal of Shellfish Research 38, 619627.CrossRefGoogle Scholar
Palumbi, SR (1996) Nuclei acids II: the polymerase chain reaction. In Hillis, DM, Moritz, C and Mable, BK (eds), Molecular Systematics. Sunderland, MA: Sinauer and Associates, pp. 205247.Google Scholar
Pardo-Gandarillas, MC, Ibáñez, CM, Yamashiro, C, Méndez, MA and Poulin, E (2018) Demographic inference and genetic diversity of Octopus mimus (Cephalopoda: Octopodidae) throughout the Humboldt current system. Hydrobiologia 808, 125135.CrossRefGoogle Scholar
Rambaut, A, Drummond, AJ, Xie, D, Baele, G and Suchard, MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67, 901904.CrossRefGoogle ScholarPubMed
, ME (1998) Pulpos octopodidos (Cephalopoda, Octopodidae). In Boschi, EE (ed.), Los moluscos de interés pesquero. Tomo 2: Cultivos y estrategias reproductivas de bivalvos y equinoideos. Mar de Plata: Offset Vega, pp. 6998.Google Scholar
Ronquist, F, Teslenko, M, van der Mark, P, Ayres, DL, Darling, A, Höhna, S, Larget, B, Liu, L, Suchard, MA and Huelsenbeck, JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539542.CrossRefGoogle ScholarPubMed
Rozas, J, Ferrer-Mata, A, Sánchez-Del Barrio, JC, Guirao-Rico, S, Librado, P, Ramos-Onsins, SE and Sánchez-Gracia, A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution 34, 32993302.CrossRefGoogle ScholarPubMed
Sanchez, G, Setiamarga, DHE, Tuanapaya, S, Tongtherm, K, Winkelmann, IE, Schmidbaur, H, Umino, T, Albertin, C, Allcock, L, Perales-Raya, C, Gleadall, I, Strugnell, JM, Simakov, O and Nabhitabhata, J (2018) Genus-level phylogeny of cephalopods using molecular markers: current status and problematic areas. PeerJ 6, e4331.CrossRefGoogle ScholarPubMed
Sauer, WHH, Gleadall, IG, Downey-Breedt, N, Doubleday, Z, Gillespie, G, Haimovici, M, Ibáñez, CM, Katugin, ON, Leporati, S, Lipinski, MR, Markaida, U, Ramos, JE, Rosa, R, Villanueva, R, Arguelles, J, Briceño, FA, Carrasco, SA, Che, LJ, Chen, C-S, Cisneros, R, Conners, E, Crespi-Abril, AC, Kulik, VV, Drobyazin, EN, Emery, T, Fernández-Álvarez, FA, Furuya, H, González, LW, Gough, C, Krishnan, P, Kumar, B, Leite, T, Lu, C-C, Mohamed, KS, Nabhitabhata, J, Noro, K, Petchkamnerd, J, Putra, D, Rocliffe, S, Sajikumar, KK, Sakaguchi, H, Samuel, D, Sasikumar, G, Wada, T, Zheng, X, Tian, Y, Pang, Y, Yamrungrueng, A and Pecl, G (2019) World Octopus fisheries. Reviews in Fisheries Science & Aquaculture 29, 279429.CrossRefGoogle Scholar
Sotelo, G, Duvetorp, M, Costa, D, Panova, M, Johannesson, K and Faria, R (2020) Phylogeographic history of flat periwinkles, Littorina fabalis and L. obtusata. BMC Evolutionary Biology 20, 23.CrossRefGoogle ScholarPubMed
Strugnell, J (2004) The molecular evolutionary history of the class Cephalopoda (Phylum Mollusca). PhD thesis, University of Oxford, Oxford.Google Scholar
Strugnell, JM, Cherel, Y, Cooke, IR, Gleadall, IG, Hochberg, FG, Ibáñez, CM, Jorgensen, E, Laptikhovsky, VV, Linse, K, Norman, M, Vecchione, M, Voight, JR and Allcock, AL (2011) The Southern Ocean: source and sink? Deep-Sea Research II 58, 196204.CrossRefGoogle Scholar
Thompson, JD, Higgins, DG and Gibson, TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
Toussaint, RK, Scheel, D, Sage, GK and Talbot, SL (2012) Nuclear and mitochondrial markers reveal evidence for genetically segregated cryptic speciation in giant Pacific octopuses from Prince William Sound, Alaska. Conservation Genetics 13, 14831497.CrossRefGoogle Scholar
Trifinopoulos, J, Nguyen, L-T, von Haeseler, A and Minh, BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44, W232W235.CrossRefGoogle ScholarPubMed
Uriarte, I and Farías, A (2014) Enteroctopus megalocyathus. In Iglesias, J, Fuentes, L and Villanueva, R (eds), Cephalopod Culture. New York, NY: Springer, pp. 365382.CrossRefGoogle Scholar
Supplementary material: File

Pliego-Cárdenas et al. supplementary material

Tables S1-S5

Download Pliego-Cárdenas et al. supplementary material(File)
File 30.6 KB