Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T20:52:21.512Z Has data issue: false hasContentIssue false

Factors affecting deposition of the shell in Balanus balanoides (L.)

Published online by Cambridge University Press:  11 May 2009

Edwin Bourget*
Affiliation:
N.E.R.C. Unit of Marine Invertebrate Biology, Marine Science Laboratories, Menai Bridge, Anglesey, U.K.
Dennis J. Crisp
Affiliation:
N.E.R.C. Unit of Marine Invertebrate Biology, Marine Science Laboratories, Menai Bridge, Anglesey, U.K.
*
*Present address: INRS-Oceanologie, 300, avenue des Ursulines, Rimouski, Quebec, Canada.

Extract

The growth of littoral and sublittoral barnacles has been studied in some detail using linear, surface or volumetric measurements (see Barnes & Barnes, 1959). The growth curve in terms of linear dimension generally included an extended straight section which implies, assuming a constant shape, that the volume is increasing with time in proportion to the area (Crisp, 1960). Hence a plot of basal diameter against time is the simplest characteristic of the growth during most of the life of an isolated specimen. In most studies the shells are measured at daily, weekly or monthly intervals and the effect of different factors on growth evaluated. Thus, it has been claimed experimentally that many factors influence directly the growth of barnacles. These factors and their effects are outlined in Table 1.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, H., 1953. The effect of light on the growth rate of two barnacles Balanus balanoides (L.) and B. crenatus Brug. under conditions of total submergence. Oikos, 4, 104–11.CrossRefGoogle Scholar
Barnes, H., 1955. The growth rate of Balanus balanoides (L.). Oikos, 6, 109–13.CrossRefGoogle Scholar
Barnes, H., 1961. Variation of the seasonal growth rate of Balanus balanoides with special reference to the presence of endogenous factors. Internationale Revue der gesamten Hydrobiologie u Hydro-graphie, 46, 427–8.CrossRefGoogle Scholar
Barnes, H., 1962. So-called anecdysis in Balanus balanoides and the effect of breeding upon the growth of the calcareous shell of some common barnacles. Limnology and Oceanography, 7, 462–73.CrossRefGoogle Scholar
Barnes, H. & Barnes, M., 1959. Some parameters of growth in the common intertidal barnacle, Balanus balanoides (L.). Journal of the Marine Biological Association of the United Kingdom, 38, 581–7.CrossRefGoogle Scholar
Barnes, H. & Barnes, M., 1962. The growth rate of Elminius modestus (Crust., Cirripedia) in Scotland. Internationale Revue der gesamten Hydrobiologie u Hydrographie, 47, 481–6.CrossRefGoogle Scholar
Barnes, H., Crisp, D. J. & Powell, H. T., 1951. Observations on the orientation of some species of barnacles. Journal of Animal Ecology, 20, 227–41.CrossRefGoogle Scholar
Barnes, H. & Powell, H. T. 1953. The growth of Balanus balanoides (L.) and B. crenatus Brug. under varying conditions of submersion. Journal of the Marine Biological Association of the United Kingdom, 32, 107–28.CrossRefGoogle Scholar
Bocquet-Védrine, J., 1964. Relation entre la croissance basilaire du test du Cirripede opercule Elminius modestus Darwin et le cycle d'intermue de la masse viscerale. Compte rendu hebdomadaire des seances de Vacademie des sciences, 258, 5060–2.Google Scholar
Bocquet-Védrine, J., 1965. Etude du tegument et de la mue chez le Cirripede opercule Elminius modestus Darwin. Archives de zoologie expe'rimentale et generate, 105, 3076.Google Scholar
Bocquet-Védrine, J., 1966a. Structure et croissance du test chez le Cirripede opercule Acasta spongites (Poli). Archives de zoologie expe'rimentale et generate, 107, 693702.Google Scholar
Bocquet-Védrine, J., 1966b. Relation entre la croissance du test calcaire et le cycle d'intermue de la masse viscerale chez le Cirripede opercule Acasta spongites (Poli). Compte rendu hebdomadaire des seances de Vacademie des sciences, 262, 2733–5.Google Scholar
Bourget, E., 1974. Environmental and structural control of trace elements in barnacle shell. Afarme Biology. (In the Press.)CrossRefGoogle Scholar
Bourget, E., 1975. Shell structure in the Balanomorpha and its value in taxonomy. (In Preparation.)Google Scholar
Bourget, E. & Crisp, D. J., 1975a. Early changes in the shell form of Balanus balanoides (L.). Journal of Experimental Marine Biology and Ecology. (In the Press.)CrossRefGoogle Scholar
Bourget, E. & Crisp, D. J., 1975b. An analysis of the growth bands and ridges of barnacle shell plates. Journal of the Marine Biological Association of the United Kingdom, 55. (In the Press.)CrossRefGoogle Scholar
Costlow, J. D., 1956. Shell development in Balanus improvisus Darwin. Journal of Morphology, 99 (2), 359–98.CrossRefGoogle Scholar
Costlow, J. D. & Bookhout, C. G., 1953. Molting and growth in Balanus improvisus. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 105, 420–33.CrossRefGoogle Scholar
Costlow, J. D. & Bookhout, C. G., 1956. Molting and shell growth in Balanus amphitrite. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 110, 107–17.CrossRefGoogle Scholar
Crisp, D. J., 1960. Factors influencing growth-rate in Balanus balanoides. Journal of Animal Ecology, 29, 95116.CrossRefGoogle Scholar
Crisp, D. J., 1964. An assessment of plankton grazing by barnacles. In: Grazing in Terrestrial and Marine Environments, A Symposium of the British Geological Society, Bangor, 11–14 April 1962, ed. Crisp, D. J., Oxford: Blackwell Scientific Publications Ltd. 251–64.Google Scholar
Crisp, D. J. & Meadows, P. S., 1962. The chemical basis of gregariousness in cirripedes. Proceedings of the Royal Society, B, 156, 500–20.Google Scholar
Crisp, D. J. & Meadows, P. S., 1963. Adsorbed layers: the stimulus to settlement in barnacles. Proceedings of the Royal Society, B, 158, 364–88.Google Scholar
Crisp, D. J. & Patel, B. S., 1958. Relation between breeding and ecdysis in cirripedes. Nature, London, 181, 1078–9.CrossRefGoogle Scholar
Crisp, D. J. & Patel, B. S., 1960. The moulting cycle in Balanus balanoides'L. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 118, 3147.CrossRefGoogle Scholar
Crisp, D. J. & Patel, B. S., 1961. The interaction between breeding and growth rate in the barnacle Elminius modestus Darwin. Limnology and Oceanography, 6, 105–15.CrossRefGoogle Scholar
Davies, O. L., 1947. Statistical methods in research and production. 292 pp. Edinburgh: Oliver and Boyd.Google Scholar
Drach, P., 1939. Mue et cycle d'intermue chez les Crustaces decapodes. Annales de Vlnstitut océanographique, 19, 103391.Google Scholar
Hatton, H., 1938. Essais de bionomie explicative sur quelques especes intercotidales. Annales de l'Institut océanographique, 17, 241–8.Google Scholar
Hatton, H. & Fischer-Piette, E., 1932. Observations et experiences sur le peuplement des cotes par les Cirripedes. Bulletin de Vlnstitut océanographique, 592, 115.Google Scholar
Klugh, A. B. & Newcombe, C. L., 1935. Light as a controlling factor in the growth of Balanus balanoides. Canadian Journal of Research, 13(D), 3944.CrossRefGoogle Scholar
Moore, H. B., 1934. The biology of Balanus balanoides. I. Growth rate and its relation to size, season and tidal level. Journal of the Marine Biological Association of the United Kingdom, 19, 851–68.CrossRefGoogle Scholar
Moore, H. B., 1936. The biology of Balanus balanoides. V. Distribution on the Plymouth area. Journal of the Marine Biological Association of the United Kingdom, 20, 701–16.CrossRefGoogle Scholar
Rogers, A. W., 1967. Techniques of autoradiography. 338 pp. Amsterdam, London, New York: Elsevier Publishing Company.Google Scholar
Spurr, A. R., 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research, 26, 3143.CrossRefGoogle ScholarPubMed
Sverdrup, H. U., Johnson, M. W. & Fleming, R. H., 1942. The oceans, their physics, chemistry and general biology. 1087 pp. New York: Prentice-Hall, Inc.Google Scholar
Wilbur, K. M., 1972. Shell formation in mollusks. In: Chemical Zoology, 7, Mollusca, eds M., Florkin and Sheer, B. T., 103–45. New York: Academic Press.Google Scholar