Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T15:18:13.015Z Has data issue: false hasContentIssue false

Exposure of bivalve shellfish to titania nanoparticles under an environmental-spill scenario: Encounter, ingestion and egestion

Published online by Cambridge University Press:  11 August 2015

John J. Doyle*
Affiliation:
Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340, USA
J. Evan Ward
Affiliation:
Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340, USA
Robert Mason
Affiliation:
Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340, USA
*
Correspondence should be addressed to: J.J. Doyle, Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340, USA. email: [email protected]

Abstract

Nanoparticles have applications in a diverse range of products including medications, detergents, cosmetics, paint, sunscreen and electronics, with an economic worth projected to reach $2.5 trillion dollars in 2015. Research into the effects of manufactured nanomaterials on the environment, however, has failed to keep pace with the high volume of commercial production. Whereas a number of studies have examined the effects of nanoparticles on aquatic species, little work has focused on the way in which benthic marine species encounter, ingest and depurate these materials. The purpose of this study was to examine the ingestion and depuration of titania nanoparticles (anatase) by the blue mussel (Mytilus edulis) and the eastern oyster (Crassostrea virginica) during a spill scenario (an acute exposure to elevated concentrations). Bivalves were exposed to nanoparticles either incorporated into marine snow, an environmentally relevant medium for pollutants, or added directly to seawater at a concentration of 4.5 mg L−1 for 2 h. After feeding, the animals were transferred to filtered seawater and allowed to depurate. Faeces and tissues were collected at 0, 6, 24, 72 and 120 h, post-exposure, and analysed for concentrations of titanium by inductively coupled plasma-mass spectrometry. Results indicated that the capture and ingestion of titania nanoparticles by both species was not dependent on the method of delivery (incorporated into marine snow or freely suspended). Additionally, greater than 90% of the titania nanoparticles, on average, were eliminated from the tissues after 6 h, and only trace amounts remained after 72 h. These data demonstrate that mussels and oysters readily ingest titania nanoparticles, but rapidly depurate the material within hours of an acute exposure suggesting that little would be transferred to secondary consumers including humans. Further research is required to determine if other species of suspension-feeders handle titania nanoparticles in a manner similar to bivalves.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott-Chalew, T.E., Galloway, J.F. and Graczyk, T.K. (2012) Pilot study on effects of nanoparticle exposure on Crassostrea virginica hemocyte phagocytosis. Marine Pollution Bulletin 64, 22512253.CrossRefGoogle ScholarPubMed
Adams, L.K., Lyon, D.Y., McIntosh, A. and Alvarez, P.J.J. (2006) Comparative toxicity of nano-scale TiO2, SiO2, and ZnO water suspensions. Water Research 40, 35273532.CrossRefGoogle Scholar
Alber, M. and Valiela, I. (1994) Incorporation of organic aggregates by marine mussels. Marine Biology 121, 259265.CrossRefGoogle Scholar
Alber, M. and Valiela, I. (1996) Utilization of microbial organic aggregates by bay scallops, Argopecten irradians (Lamarck). Journal of Experimental Marine Biology and Ecology 195, 7189.CrossRefGoogle Scholar
Alldredge, A.L. (2000) Interstitial dissolved organic carbon (DOC) concentrations within sinking marine aggregates and their potential contribution to carbon flux. Limnology and Oceanography 45, 12451253.CrossRefGoogle Scholar
Alldredge, A.L., Passow, U. and Logan, B.E. (1993) The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Research Part I 40, 11311140.CrossRefGoogle Scholar
Alldredge, A.L. and Silver, M.W. (1988) Characteristics, dynamics and significance of marine snow. Progress in Oceanography 20, 4182.CrossRefGoogle Scholar
Al-Sid-Cheikh, M., Rouleau, C. and Pelletier, E. (2013) Tissue distribution and kinetics of dissolved and nanoparticulate silver in Iceland scallop (Chlamys islandica). Marine Environmental Research 86, 2128.CrossRefGoogle ScholarPubMed
Al-Subiai, S.N., Arlt, V.M., Frickers, P.E., Readman, J.W., Stolpe, B., Read, J.R., Moody, A.J. and Jha, A.N. (2012) Merging nano-genotoxicology with eco-genotoxicology: an integrated approach to determine interactive genotoxic and sub-lethal toxic effects of C60 fullerenes and fluoranthene in marine mussels, Mytilus sp. Mutation Research 745, 92103.CrossRefGoogle ScholarPubMed
Amézaga-Madrid, P., Silveyra-Morales, R., Córdoba-Fierro, L., Nevárez-Moorillón, G.V., Miki-Yoshida, M., Orrantia-Borunda, E. and Solís, F.J. (2003) TEM evidence of ultrastructural alteration on Pseudomonas aeruginosa by photocatalytic TiO2 thin films. Journal of Photochemistry and Photobiology B: Biology 70, 4550.CrossRefGoogle ScholarPubMed
Bar-Ilan, O., Chuang, C.C., Schwahn, D.J., Yang, S., Joshi, S., Pedersen, J.A., Hamers, R.J., Peterson, R.E. and Heidman, W. (2013) TiO2 nanoparticle exposure and illumination during zebrafish development: mortality at parts per billion concentrations. Environmental Science and Technology 47, 47264733.CrossRefGoogle ScholarPubMed
Barmo, C., Ciacci, C., Canonico, B., Fabbri, R., Cortese, K., Balbi, T., Marcomini, A., Pojana, G., Gallo, G. and Canesi, L. (2013) In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis. Aquatic Toxicology 132–133, 918.CrossRefGoogle ScholarPubMed
Baun, A., Hartmann, N.B., Grieger, K. and Kusk, O. (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17, 387395.CrossRefGoogle ScholarPubMed
Bayne, B.L., Hawkins, A.J.S., Navarro, E. and Iglesias, I.P. (1989) Effects of seston concentration on feeding, digestion and growth in the mussel Mytilus edulis. Marine Ecology Progress Series 55, 4754.CrossRefGoogle Scholar
Benn, T.M. and Westerhoff, P. (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environmental Science and Technology 42, 41334139.CrossRefGoogle ScholarPubMed
Brant, J., Lecoanet, H. and Wiesner, M. (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. Journal of Nanoparticle Research 7, 545553.CrossRefGoogle Scholar
Bricelj, V.M., Bass, A.E. and Lopez, G.R. (1984) Absorption and gut passage time of microalgae in a suspension feeder: an evaluation of the 51Cr:14C twin tracer technique. Marine Ecology Progress Series 17, 5763.CrossRefGoogle Scholar
Brillant, M.G.S. and MacDonald, B.A. (2000) Postingestive selection in the sea scallop, Placopecten magellanicus (Gmelin): the role of particle size and density. Journal of Experimental Marine Biology and Ecology 253, 211227.CrossRefGoogle ScholarPubMed
Brillant, M.G.S. and MacDonald, B.A. (2002) Postingestive selection in the sea scallop (Placopecten magellanicus) on the basis of chemical properties of particles. Marine Biology 141, 457465.Google Scholar
Brillant, M.G.S. and MacDonald, B.A. (2003) Postingestive sorting of living and heat-killed Chlorella within the sea scallop, Placopecten magellanicus (Gmelin). Journal of Experimental Marine Biology and Ecology 290, 8191.CrossRefGoogle Scholar
Buffet, P.E., Richard, M., Caupos, F., Vergnoux, A., Perrein-Ettajani, H., Luna-Acosta, A., Akcha, F., Amiard, J.C., Amiard-Triquet, C., Guibbolini, M., Risso-De Faverney, C., Thomas-Guyon, H., Reip, P., Dybowska, A., Berhanu, D., Valsami-Jones, E. and Mouneyrac, C. (2013) A mesocosm study of fate and effects of CuO nanoparticles on endobenthic species (Scrobicularia plana, Hediste diversicolor). Environmental Science and Technology 47, 16201628.Google ScholarPubMed
Buffet, P.E., Tankoua, O.F., Pan, J.F., Berhanu, D., Herrenknecht, C., Poirier, L., Amiard-Triquet, C., Amiard, J.C., Bérard, J.B., Risso, C., Guibbolini, M., Roméo, M., Reip, P., Valsami-Jones, E. and Mouneyrac, C. (2011) Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. Chemosphere 84, 166174.CrossRefGoogle ScholarPubMed
Burns, J.M., Pennington, P.L., Sisco, P.N., Frey, R., Kashiwada, S., Fulton, M.H., Scott, G.I., Decho, A.W., Murphy, C.J., Shaw, T.J. and Ferry, J.L. (2013) Surface charge controls the fate of Au nanorods in saline estuaries. Environmental Science and Technology 47, 1284412851.CrossRefGoogle ScholarPubMed
Canesi, L., Ciacci, C., Betti, M., Fabbri, R., Canonico, B., Fantinati, A., Marcomini, A. and Pojana, G. (2008) Immunotoxicity of carbon black nanoparticles to blue mussel hemocytes. Environment International 34, 11141119.CrossRefGoogle ScholarPubMed
Canesi, L., Ciacci, C., Fabbri, R., Marcomini, A., Pojana, G. and Gallo, G. (2012) Bivalve molluscs as a unique target group for nanoparticle toxicity. Marine Environmental Research 76, 1621.CrossRefGoogle Scholar
Canesi, L., Ciacci, C., Vallotto, D., Gallo, G., Marcomini, A. and Pojana, G. (2010a) In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquatic Toxicology 96, 151158.CrossRefGoogle ScholarPubMed
Canesi, L., Fabbri, R., Gallo, G., Vallotto, D., Marcomini, A. and Pojana, G. (2010b) Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2). Aquatic Toxicology 100, 168177.CrossRefGoogle ScholarPubMed
Canesi, L., Frenzilli, G., Balbi, T., Bernardeschi, M., Ciacci, C., Corsolini, S., Della Torre, C., Fabbri, R., Faleri, C., Focardi, S., Guidi, P., Kočan, A., Marcomini, A., Mariottini, M., Nigro, M., Pozo-Gallardo, K., Rocco, L., Scarcelli, V., Smerilli, A. and Corsi, I. (2014) Interactive effects of n-TiO2 and 2,3,7,8-TCDD on the marine bivalve Mytilus galloprovincialis. Aquatic Toxicology 153, 5365.CrossRefGoogle Scholar
Carp, O., Huisman, C.L. and Reller, A. (2004) Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry 32, 33177.CrossRefGoogle Scholar
Chatterjee, D. and Mahata, A. (2002) Visible light induced photodegradation of organic pollutants on dye adsorbed TiO2 surface. Journal of Photochemistry and Photobiology A: Chemistry 153, 199204.CrossRefGoogle Scholar
Christian, P., Von der Kammer, F., Baalousha, M. and Hofmann, T. (2008) Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17, 326343.CrossRefGoogle ScholarPubMed
Ciacci, C., Canonico, B., Bilaniĉovă, D., Fabbri, R., Cortese, K., Gallo, G., Marcomini, A., Pojana, G. and Canesi, L. (2012) Immunomodulation by different types of N-oxides in the hemocytes of the marine bivalve Mytilus galloprovincialis. PloS ONE 7, 110.CrossRefGoogle ScholarPubMed
Couleau, N., Techer, D., Pagnout, C., Jomini, S., Foucaud, L., Laval-Gilly, P., Falla, J. and Bennasroune, A. (2012) Hemocyte responses of Dreissena polymorpha following a short-term in vivo exposure to titanium dioxide nanoparticles: preliminary investigations. Science of the Total Environment 438, 490497.CrossRefGoogle ScholarPubMed
Cranford, P.J., Ward, J.E. and Shumway, S.E. (2011) Bivalve filter feeding: variability and limits of the aquaculture biofilter. In Shumway, S.E. (ed.) Shellfish aquaculture and the environment. Chichester: John Wiley & Sons, pp. 81124.CrossRefGoogle Scholar
Crocker, K.M. and Passow, U. (1995) Differential aggregation of diatoms. Marine Ecology Progress Series 117, 249257.CrossRefGoogle Scholar
Dai, L., Syberg, K., Banta, G.T., Selck, H. and Forbes, V.E. (2013) Effects, uptake, and depuration kinetics of silver oxide and copper oxide nanoparticles in a marine deposit feeder, Macoma balthica. Sustainable Chemistry and Engineering 1, 760767.CrossRefGoogle Scholar
Dame, R.F. (1993) Conclusions: future needs in bivalve filter feeder research in an ecosystem context. In Dame, R.F. (ed.) Bivalve filter feeders in coastal and estuarine ecosystem processes: NATO advanced research workshop. Heidelberg: Springer-Verlag, pp. 565570.CrossRefGoogle Scholar
Dame, R.F. (1996) Ecology of marine bivalves: an ecosystem approach. New York: CRC Marine Science Series.CrossRefGoogle Scholar
Dankovic, D. and Kuempel, E. (2011) Occupational exposure to titanium dioxide. Current Intelligence Bulletin. Department of Health and Human Services (National Institute for Occupational Safety and Health), Washington, no. 63, 120 pp.Google Scholar
Doyle, J.J., Palumbo, V., Huey, B.D. and Ward, J.E. (2014) Behavior of titanium dioxide nanoparticles in three aqueous matrices: agglomeration and implications for benthic deposition. Water, Air, and Soil Pollution 225, 2016. doi: 10.1007/s11270-014-2106-7.CrossRefGoogle Scholar
Environmental Protection Agency (2010) State of the science literature review: Nano titanium dioxide environmental matters. U.S. Environmental Protection Agency 2010/ EPA/600/R-10/089, 486 pp.Google Scholar
FAO (2012) The state of world fisheries and aquaculture 2012. Rome, 209 pp.Google Scholar
Farré, M., Pérez, S., Kantiani, L. and Barceló, D. (2008) Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. Trends in Analytical Chemistry 27, 9911007.CrossRefGoogle Scholar
Federici, G., Shaw, B.J. and Handy, R.D. (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquatic Toxicology 84, 415430.CrossRefGoogle ScholarPubMed
Fishbein, L., Nordman, H., et al. (1982) Titanium. In Fishbein L. (ed.) Environmental Health Criteria. Geneva: World Health Organization, 68 pp. [WHO Task Group on Environmental Health Criteria for Titanium, no. 24.]Google Scholar
Foster, H.A., Ditta, I.B. and Varghese, S. (2011) Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Applied Microbiology and Biotechnology 90, 18471868.CrossRefGoogle ScholarPubMed
Fowler, S.W. and Knauer, G.A. (1986) Role of 1arge particles in the transport of elements and organic compounds through the oceanic water column. Progress in Oceanography 16, 147194.CrossRefGoogle Scholar
Galloway, T.S., Lewis, C., Dolciotti, I., Johnston, B.D., Moger, J. and Regoli, F. (2010) Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete. Environmental Pollution 158, 17481755.CrossRefGoogle Scholar
Garćia-Negrete, C.A., Blasco, J., Volland, M., Rojas, T.C., Hampel, M., Lapresta-Fernández, A., Jiménez de Haro, M.C., Soto, M. and Fernández, A. (2013) Behaviour of Au-citrate nanoparticles in seawater and accumulation in bivalves at environmentally relevant concentrations. Environmental Pollution 174, 134141.CrossRefGoogle ScholarPubMed
Geranio, L., Heuberger, M. and Nowack, B. (2009) The behavior of silver nanotextiles during washing. Environmental Science and Technology 43, 81138118.CrossRefGoogle ScholarPubMed
Gomes, T., Araújo, O., Pereira, R., Almeida, A.C., Cravo, A. and Bebianno, M.J. (2013a) Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis. Marine Environmental Research 84, 5159.CrossRefGoogle ScholarPubMed
Gomes, T., Pereira, C.G., Cardoso, C. and Bebianno, M.J. (2013b) Differential protein expression in mussels Mytilus galloprovincialis exposed to nano and ionic Ag. Aquatic Toxicology 136–137, 7990.CrossRefGoogle ScholarPubMed
Gomes, T., Pinheiro, J.P., Cancio, I., Pereira, C.G., Cardoso, C. and Bebianno, M.J. (2011) Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environmental Science and Technology 45, 93569362.CrossRefGoogle ScholarPubMed
Gottschalk, F., Sonderer, T., Scholz, R.W. and Nowack, B. (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environmental Science and Technology 43, 92169222.CrossRefGoogle ScholarPubMed
Handy, R.D., van den Brink, N., Chappell, M., Mühling, M., Behra, R., Dušinská, M., Simpson, P., Ahtiainen, J., Jha, A.N., Seiter, J., Bednar, A., Kennedy, A., Fernandes, T.F. and Riediker, M. (2012) Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? Ecotoxicology 21, 933972.CrossRefGoogle ScholarPubMed
Handy, R.D., Von der Kammer, F., Lead, J.R., Hassellov, M., Owen, R. and Crane, M. (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17, 287314.CrossRefGoogle ScholarPubMed
Hanna, S.K., Miller, R.J., Muller, E.B., Nisbet, R.M. and Lenihan, H.S. (2013) Impact of engineered zinc oxide nanoparticles on the individual performance of Mytilus galloprovincialis. PloS ONE 8, e61800. doi: 10.1371/journal.pone.0061800.CrossRefGoogle ScholarPubMed
Heinonen, K.B., Ward, J.E. and Holohan, B.A. (2007) Production of transparent exopolymer particles (TEP) by benthic suspension feeders in coastal systems. Journal of Experimental Marine Biology and Ecology 341, 184195.CrossRefGoogle Scholar
Hill, P.S. (1998) Controls on floc size in the sea. Oceanography 11, 1318.CrossRefGoogle Scholar
Hull, M.S., Vikesland, P.J. and Schultz, I.R. (2013) Uptake and retention of metallic nanoparticles in the Mediterranean mussel (Mytilus galloprovincialis). Aquatic Toxicology 140–141, 8997.CrossRefGoogle ScholarPubMed
Hund-Rinke, K. and Simon, M. (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on Daphnia and algae. Environmental Science and Pollution Research 13, 225232.CrossRefGoogle ScholarPubMed
Jackson, G.A. (1990) A model of the formation of marine algal flocs by physical coagulation processes. Deep-Sea Research 37, 11971211.CrossRefGoogle Scholar
Jaroenworaluck, A., Sunsaneeyametha, W., Kosachan, N. and Stevens, R. (2006) Characteristics of silica-coated TiO2 and its UV absorption for sunscreen cosmetic applications. Surface and Interface Analysis 38, 473477.CrossRefGoogle Scholar
Kach, D.J. and Ward, J.E. (2008) The role of marine snow in the ingestion of picoplankton-size particles by suspension-feeding molluscs. Marine Biology 153, 797805.CrossRefGoogle Scholar
Kádár, E., Lowe, D.M., Solé, M., Fisher, A.S., Jha, A.N., Readman, J.W. and Hutchinson, T.H. (2010) Uptake and biological responses to nano-Fe versus soluble FeCl3 in excised mussel gills. Analytical and Bioanalytical Chemistry 396, 657666.CrossRefGoogle ScholarPubMed
Kim, B., Kim, D., Cho, D. and Cho, S. (2003) Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere 52, 277281.CrossRefGoogle ScholarPubMed
Kiørboe, T., Andersen, K.P. and Dam, H.G. (1990) Coagulation efficiency and aggregate formation in marine phytoplankton. Marine Biology 107, 235245.CrossRefGoogle Scholar
Klaper, R., Crago, J., Barr, J., Arndt, D., Setyowati, K. and Chen, J. (2009) Toxicity biomarker expression in daphnids exposed to manufactured nanoparticles: changes in toxicity with functionalization. Environmental Pollution 157, 11521156.CrossRefGoogle ScholarPubMed
Koehler, A., Marx, U., Broeg, K., Bahns, S. and Bressling, J. (2008) Effects of nanoparticles in Mytilus edulis and hepatopancreas – a new threat to marine life. Marine Environmental Research 66, 1214.CrossRefGoogle ScholarPubMed
Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B. and Buxton, H.T. (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environmental Science and Technology 36, 12021211.CrossRefGoogle ScholarPubMed
Kühn, K.P., Chaberny, I.F., Massholder, K., Stickler, M., Benz, V.W., Sonntag, H.G. and Erdinger, L. (2003) Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere 53, 7177.CrossRefGoogle ScholarPubMed
Labille, J., Feng, J., Botta, C., Borschneck, D., Sammut, M., Cabie, M., Auffan, M., Rose, J. and Bottero, J.Y. (2010) Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment. Environmental Pollution 158, 34823489.CrossRefGoogle ScholarPubMed
Lawrence, A.L., McAloon, K.M., Mason, R.P. and Mayer, L.M. (1999) Intestinal solubilization of particle-associated organic and inorganic mercury as a measure of bioavailability to benthic invertebrates. Environmental Science and Technology 33, 18711876.CrossRefGoogle Scholar
Lead, J.R. and Smith, E. (2009) Environmental and human health impacts of nanotechnology. Chichester: John Wiley & Sons.CrossRefGoogle Scholar
Li, B., Ward, J.E. and Holohan, B.A. (2008) Transparent exopolymer particles (TEP) from marine suspension feeders enhance particle aggregation. Marine Ecology Progress Series 357, 6777.CrossRefGoogle Scholar
Li, Y., Leung, P., Yao, L., Song, Q.W. and Newton, E. (2006) Antimicrobial effect of surgical masks coated with nanoparticles. Journal of Hospital Infection 62, 5863.CrossRefGoogle ScholarPubMed
Libralato, G., Minetto, D., Totaro, S., Mičetić, I., Pigozzo, A., Sabbioni, E., Marcomini, A. and Ghirardini, A.V. (2013) Embryotoxicity of TiO2 nanoparticles to Mytilus galloprovincialis. Marine Environmental Research 92, 7178.CrossRefGoogle ScholarPubMed
Lovern, S.B. and Klaper, R. (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environmental Toxicology and Chemistry 25, 11321137.CrossRefGoogle ScholarPubMed
Lyons, M.M. (2008) The role of marine aggregates in the ecological epizootiology of Quahog Parasite X (QPX) disease in northern quahogs (= hard clams) Mercenaria mercenaria. PhD thesis. University of Connecticut, Storrs, USA.Google Scholar
Ma, H., Brennan, A. and Diamond, S.A. (2012) Phototoxicity of TiO2 nanoparticles under solar radiation to two aquatic species: Daphnia magna and Japanese Medaka. Environmental Toxicology and Chemistry 31, 16211629.CrossRefGoogle ScholarPubMed
Markowska-Szczupak, A., Ulfig, K. and Morawski, A.W. (2011) The application of titanium dioxide for deactivation of bioparticulates: an overview. Catalysis Today 169, 249257.CrossRefGoogle Scholar
McCarthy, M., Carroll, D.L. and Ringwood, A.H. (2013) Tissue specific responses of oysters, Crassostrea virginica, to silver nanoparticles. Aquatic Toxicology 138–139, 123128.CrossRefGoogle ScholarPubMed
McKee, M.P., Ward, J.E., MacDonald, B.A. and Holohan, B.A. (2005) Production of transparent exopolymer particles (TEP) by the eastern oyster, Crassostrea virginica. Marine Ecology Progress Series 288, 141149.CrossRefGoogle Scholar
Milke, L.M. and Ward, J.E. (2003) Influence of diet on pre-ingestive particle processing in bivalves II. Residence time in the pallial cavity and handling time on the labial palps. Journal of Experimental Marine Biology and Ecology 293, 151172.CrossRefGoogle Scholar
Montes, M.O., Hanna, S.K., Lenihan, H.S. and Keller, A.A. (2012) Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder. Journal of Hazardous Materials 225–226, 139145.CrossRefGoogle ScholarPubMed
Moore, C.J. (2008) Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environmental Research 108, 131139.CrossRefGoogle ScholarPubMed
Moore, M.N., Readman, J.A.J., Readman, J.W., Lowe, D.M., Frickers, P.E. and Beesley, A. (2009) Lysosomal cytotoxicity of carbon nanoparticles in cells of the molluscan immune system: an in vitro study. Nanotoxicology 3, 4045.CrossRefGoogle Scholar
Morton, B. (1977) The tidal rhythm of feeding and digestion in the Pacific oyster, Crassostrea gigas (Thunberg). Journal of Experimental Marine Biology and Ecology 26, 135151.CrossRefGoogle Scholar
Moschino, V., Nesto, N., Barison, S., Agresti, F., Colla, L., Fedele, L. and Da Ros, L. (2014) A preliminary investigation on nanohorn toxicity in marine mussels and polychaetes. Science of the Total Environment 468–469, 111119.CrossRefGoogle ScholarPubMed
Mueller, N. and Nowack, B. (2008) Exposure modeling of engineered nanoparticles in the environment. Environmental Science and Technology 42, 44474453.CrossRefGoogle ScholarPubMed
National Research Council (2007) Ocean science series coastal hazards: highlights of National Academies reports. Washington, DC: National Academies Press, 17 pp.Google Scholar
Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Miao, A.J., Quigg, A., Santschi, P.H. and Sigg, L. (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17, 372386.CrossRefGoogle ScholarPubMed
Nel, A.E., Madler, L., Velegol, D., Xia, T., Hoek, E.M.V., Somasundaran, P., Klaessig, F., Castranova, V. and Thompson, M. (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials 8, 543557.CrossRefGoogle ScholarPubMed
Newell, R.I.E. (1988) Ecological changes in Chesapeake Bay: are they the result of overharvesting the American oyster, Crassostrea virginica? In Lynch M.P. and Krome E.C. (eds) Understanding the estuary: Advances in Chesapeake Bay Research. Solomons, MD: Chesapeake Research Consortium, pp. 536546.Google Scholar
Newell, R.I.E. (2004) Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. Journal of Shellfish Research 23, 5161.Google Scholar
Newell, C.R., Pilskaln, C.H., Robinson, S.M. and MacDonald, B.A. (2005) The contribution of marine snow to the particle food supply of the benthic suspension-feeder, Mytilus edulis. Journal of Experimental Marine Biology and Ecology 321, 109124.CrossRefGoogle Scholar
Oberdörster, E., Zhu, S., Blickley, T.M., McClellan-Green, P. and Haasch, M.L. (2006) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44, 11121120.CrossRefGoogle Scholar
Orians, K.J., Boyle, E.A. and Bruland, K.W. (1990) Dissolved titanium in the open ocean. Nature 348, 322325.CrossRefGoogle Scholar
Owen, G. (1966) Digestion. In Wilbur, K.M. and Yonge, C.M. (eds) Physiology of Mollusca, Volume II. New York, NY: Academic Press, pp. 5396.CrossRefGoogle Scholar
Owen, G. (1974) Feeding and digestion in the bivalvia. In Lowenstein, O. (ed.) Advances in comparative physiology and biochemistry, Volume 5. New York, NY: Academic Press, pp. 135.Google Scholar
Pan, J.F., Buffet, P.E., Poirier, L., Amiard-Triquet, C., Gilliland, D., Joubert, Y., Pilet, P., Guibbolini, M., Risso de Faverney, C., Roméo, M., Valsami-Jones, E. and Mouneyrac, C. (2012) Size dependent bioaccumulation and ecotoxicity of gold nanoparticles in an endobenthic invertebrate: the Tellinid clam Scrobicularia plana. Environmental Pollution 168, 3743.CrossRefGoogle Scholar
Passow, U. and Wassmann, P. (1994) On the trophic fate of Phaeocystis pouchetii (Hariot). 4. The formation of marine snow by P. pouchetii. Marine Ecology Progress Series 104, 153161.CrossRefGoogle Scholar
Ploug, H. (2001) Small-scale oxygen fluxes and remineralization in sinking aggregates. Limnology and Oceanography 46, 16241631.CrossRefGoogle Scholar
Prins, T.C., Smaal, A.C. and Dame, R. (1998) A review of the feedbacks between bivalve grazing and ecosystem processes. Aquatic Ecology 31, 349359.CrossRefGoogle Scholar
Reid, R.G.B. (1965) The structure and function of the stomach in bivalve molluscs. Journal of Zoology 147, 156184.Google Scholar
Riisgård, H.U. (1988) Efficiency of particle retention and filtration rate in 6 species of Northeast American bivalves. Marine Ecology Press Series 45, 217223.CrossRefGoogle Scholar
Ringwood, A.H., Levi-Polyachenko, N. and Carroll, D.L. (2009) Fullerene exposures with oysters: embryonic, adult, and cellular responses. Environmental Science and Technology 43, 71367141.CrossRefGoogle ScholarPubMed
Ringwood, A.H., McCarthy, M., Bates, T.C. and Carroll, D.L. (2010) The effects of silver nanoparticles on oyster embryos. Marine Environmental Research 69, S49S51.CrossRefGoogle ScholarPubMed
Robertson, J.M.C., Robertson, P.K.J. and Lawton, L.A. (2005) A comparison of the effectiveness of TiO2 photocatalysis and UVA photolysis for the destruction of three pathogenic micro-organisms. Journal of Photochemistry and Photobiology A: Chemistry 175, 5156.CrossRefGoogle Scholar
Robichaud, C.O., Uyar, A.E., Darby, M.R., Zucker, L.G. and Wiesner, M.R. (2009) Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environmental Science and Technology 43, 42274233.CrossRefGoogle ScholarPubMed
Schroeder, H.A., Balassa, J.J. and Tipton, I.H. (1963) Abnormal trace metals in man: titanium. Journal of Chronic Diseases 16, 5569.CrossRefGoogle Scholar
Scientific Committee on Consumer Safety (2013) Opinion on titanium dioxide (nano form). European Commission. http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_136.pdf.Google Scholar
Scientific Committee on Emerging and Newly Identified Health Risks (2006) The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. European Commission. http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_003b.pdf.Google Scholar
Serpone, N., Dondi, D. and Albini, A. (2007) Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products. Inorganica Chimica Acta 360, 794802.CrossRefGoogle Scholar
Shanks, A.L. and Edmondson, E.W. (1989) Laboratory-made artificial marine snow: a biological model of the real thing. Marine Biology 101, 463470.CrossRefGoogle Scholar
Sharma, V.K. (2009) Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment – a review. Journal of Environmental Science and Health Part A 44, 14851495.CrossRefGoogle ScholarPubMed
Shih, Y.H., Liu, W.S. and Su, Y.F. (2012) Aggregation of stabilized TiO2 nanoparticle suspensions in the presence of inorganic ions. Environmental Toxicology and Chemistry 31, 16931698.CrossRefGoogle ScholarPubMed
Siddiquey, I.A., Ukaji, E., Furusawa, T., Sato, M. and Suzuki, N. (2007) The effects of organic surface treatment by methacryloxypropyltrimethoxysilane on the photostability of TiO2. Materials Chemistry and Physics 105, 162168.CrossRefGoogle Scholar
Sillanpää, M., Paunu, T.M. and Sainio, P. (2011) Aggregation and deposition of engineered TiO2 nanoparticles in natural fresh and brackish waters. Journal of Physics: Conference Series 304, 18.Google Scholar
Silver, M.W., Shanks, A.L. and Trent, J.D. (1978) Marine snow: microplankton habitat and source of small-scale patchiness in pelagic populations. Science 201, 371373.CrossRefGoogle ScholarPubMed
Skrabal, S.A. (1995) Distributions of dissolved titanium in Chesapeake Bay and the Amazon River Estuary. Geochimica et Cosmochimica Acta 59, 24492458.CrossRefGoogle Scholar
Skrabal, S.A., Ullman, W.J. and Luther, G.W. (1992) Estuarine distributions of dissolved titanium. Marine Chemistry 37, 83103.CrossRefGoogle Scholar
Taurozzi, J.S., Hackley, V.A. and Wiesner, M.A. (2012) Preparation of nanoparticle dispersions from powdered material using ultrasonic disruption. NIST Special Publication 1200–2, http://dx.doi.org/10.6028/NIST.SP.1200-2CrossRefGoogle Scholar
Tedesco, S., Doyle, H., Blasco, J., Redmond, G. and Sheehan, D. (2010) Exposure of the blue mussel, Mytilus edulis, to gold nanoparticles and the pro-oxidant menadione. Comparative Biochemistry and Physiology Part C 151, 167174.Google ScholarPubMed
Tedesco, S., Doyle, H., Redmond, G. and Sheehan, D. (2008) Gold nanoparticles and oxidative stress in Mytilus edulis. Marine Environmental Research 66, 131133.CrossRefGoogle ScholarPubMed
Tiede, K., Hassellov, M., Breitbarth, E., Chaudhry, Q. and Boxall, A. (2009) Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. Journal of Chromatography A 1216, 503509.CrossRefGoogle ScholarPubMed
Vevers, W.F. and Jha, A.N. (2008) Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 17, 410420.CrossRefGoogle ScholarPubMed
Waite, A.M., Safi, K.A., Hall, J.A. and Nodder, S.D. (2000) Mass sedimentation of picoplankton embedded in organic aggregates. Limnology and Oceanography 45, 8797.CrossRefGoogle Scholar
Wang, H., Wick, R.L. and Xing, B. (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3, and TiO2 to the nematode Caenorhabditis elegans. Environmental Pollution 157, 11711177.CrossRefGoogle ScholarPubMed
Wang, Y., Hu, M., Li, Q., Li, J., Lin, D. and Lu, W. (2014) Immune toxicity of TiO2 under hypoxia in the green-lipped mussel Perna viridis based on flow-cytometric analysis of hemocyte parameters. Science of the Total Environment 470–471, 791799.CrossRefGoogle ScholarPubMed
Ward, J.E. and Kach, D.J. (2009) Marine snow facilitates ingestion of nanoparticles by suspension-feeding bivalves. Marine Environmental Research 68, 137142.CrossRefGoogle Scholar
Ward, J.E. and Shumway, S.E. (2004) Separating the grain from the chaff: particle selection in suspension- and deposit-feeding bivalves. Journal of Experimental Marine Biology and Ecology 300, 83130.CrossRefGoogle Scholar
Warheit, D.B., Hoke, R., Finlay, C., Donner, E.M., Reed, K.L. and Sayes, C.M. (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicology Letters 171, 99110.CrossRefGoogle ScholarPubMed
Wegner, A., Besseling, E., Foekema, E.M., Kamermans, P. and Koelmans, A.A. (2012) Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.). Environmental Toxicology and Chemistry 31, 24902497.CrossRefGoogle ScholarPubMed
Xie, B., Xu, Z., Guo, W. and Li, Q. (2008) Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles. Environmental Science and Technology 42, 28532859.CrossRefGoogle ScholarPubMed
Yokoi, K. and van den Berg, C.M.G. (1991) Determination of titanium in sea water using catalytic cathodic stripping voltammetry. Analytica Chimica Acta 245, 167176.CrossRefGoogle Scholar
Zuykov, M., Pelletier, E., Belzile, C. and Demers, S. (2011a) Alteration of shell nacre micromorphology in blue mussel Mytilus edulis after exposure to free-ionic silver and silver nanoparticles. Chemosphere 84, 701706.CrossRefGoogle ScholarPubMed
Zuykov, M., Pelletier, E. and Demers, S. (2011b) Colloidal complexed silver and silver nanoparticles in extrapallial fluid of Mytilus edulis. Marine Environmental Research 71, 1721.CrossRefGoogle ScholarPubMed
Supplementary material: Image

Doyle supplementary material S1

Figure

Download Doyle supplementary material S1(Image)
Image 151.7 KB
Supplementary material: Image

Doyle supplementary material S2

Figure

Download Doyle supplementary material S2(Image)
Image 187.4 KB
Supplementary material: File

Doyle supplementary material S3

Doyle supplementary material

Download Doyle supplementary material S3(File)
File 21.1 KB