Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T19:00:01.727Z Has data issue: false hasContentIssue false

The euryhaline crab Uca tangeri showed metabolic differences to sex and environmental salinity

Published online by Cambridge University Press:  03 July 2017

Silvina A. Pinoni
Affiliation:
Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
Ismael Jerez-Cepa
Affiliation:
Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Spain
Alejandra A. López Mañanes*
Affiliation:
Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
Juan Miguel Mancera Romero
Affiliation:
Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Spain
*
Correspondence should be addressed to: A.A. López Mañanes, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina email: [email protected]

Abstract

This study constitutes a first attempt to investigate sex differences in osmoregulatory capacity and metabolic responses in relation to hyper- and hypo-osmoregulation in the intertidal euryhaline crab Uca tangeri. Adult male and female specimens from Cadiz Bay, Spain (36°23′–37′N 6°8′–15′W), were acclimated to three different environmental salinities (12, 33 and 55 psu) during 7 days, and several parameters were assessed in haemolymph (osmolality, glucose, amino acids, triglycerides and lactate) as well as in metabolic key organs (hepatopancreas, anterior and posterior gills: glycogen, free glucose, amino acids and triglycerides). Specimens from both sex exhibited high and similar hyper- and hypo-osmoregulatory capacities. However, metabolite levels were differentially affected upon acclimation to low and high salinity in several metabolic organs and haemolymph of male and females: (i) glycogen in gills, (ii) free glucose in gills and hepatopancreas, (iii) amino acids in hepatopancreas, (iv) triglycerides in haemolymph, hepatopancreas and posterior gills, and (v) lactate in haemolymph. The results suggest the occurrence of differential metabolic adjustments upon hyper- and hypo-osmoregulation related to sex in the intertidal euryhaline crab U. tangeri.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors have contributed equally to this work.

Senior authors have contributed equally to this work.

References

REFERENCES

Allender, M.C., Schumacher, J., Milam, J., George, R., Cox, S. and Martín-Jiménez, T. (2008) Pharmacokinetics of intravascular itraconazole in the American horseshoe crab (Limulus polyphemus). Journal of Veterinary Pharmacology and Therapeutics 31, 8386.Google Scholar
Bautista- Chamizo, E., De Orte, M.R., Del Valls, A. and Riba, I. (2016) Simulating CO2 leakages from CCS to determine Zn toxicity using the marine microalgae Pleurochrysis roscoffensis. Chemosphere 144, 955965.Google Scholar
Bianchini, A., Machado Lauer, M., Nery, L., Pinto Colares, E., Monserrat, J.M. and dos Santos Filho, E.A. (2008) Biochemical and physiological adaptations in the estuarine crab Neohelice granulata during salinity acclimation. Comparative and Biochemical Physiology A 151, 423436.Google Scholar
Buckup, L., Dutra, B., Ribarcki, F., Fernandes, F., Noro, C., Oliveira, G. and Vinagre, A. (2008) Seasonal variations in the biochemical composition of the crayfish Parastacus defossus (Crustacea, Decapoda) in its natural environment. Comparative and Biochemical Physiology A 149, 5967.Google Scholar
Carter, C.G. and Mente, E. (2014) Protein synthesis in crustaceans: a review focused on feeding and nutrition. Central European Journal of Biology 9, 110.Google Scholar
Chen, K., Li, E., Li, T., Xu, C., Wang, X., Lin, H. and Chen, L. (2015) Transcriptome and molecular pathway analysis of the hepatopancreas in the Pacific white shrimp Litopenaeus vannamei under chronic low-salinity stress. PLoS ONE 10, e0131503. doi: 10.1371/journal.pone.0131503.Google Scholar
Cheng, L., Jin, X.K., Li, W.W., Li, S., Guo, X.N., Wang, J., Gong, Y.N., He, L. and Wang, Q. (2013) Fatty acid binding proteins FABP9 and FABP10 participate in antibacterial responses in Chinese mitten crab. Eriocheir sinensis. PLoS ONE. 8, e54053. doi: 10.1371/journal.pone.0054053Google Scholar
de Gibert, J.M., Muñiz, F., Belaústegui, Z. and Hyžný, M. (2013) Fossil and modern fiddler crabs (Uca tangeri: Ocypodidae) and their burrows from SW Spain: ichnologic and biogeographic implications. Journal of Crustacean Biology 33, 537551.Google Scholar
Dima, J.M., De Vido, N.A., Leal, G.A. and Barón, P.J. (2009) Fluctuations in the biochemical composition of the Patagonian stone crab Platyxanthus patagonicus A. Milne Edwards, 1879 (Platyxanthidae: Brachyura) throughout its reproductive cycle. Scientia Marina 73, 423430.Google Scholar
Drews, G. and Graszynski, K. (1983) Ökophysiologische Untersuchung zur osmoregulatorischen Leistung der euryhalinen Winkerkrabbe Uca tangeri (Eydoux 1835) in ihrem Lebensraum und der Atlantikküste Südwest-Spaniens. Verhandlungen der Deutschen Zoologischen Gesellschaft in Hamburg 76, 225.Google Scholar
Ferrón, S., Alonso Pérez, F., Ortega, T. and Forja, J.M. (2009) Benthic respiration on the northeastern shelf of the Gulf of Cádiz (SW Iberian Peninsula). Marine Ecology Progress Series 392, 6980.Google Scholar
Figueiredo, M.S.R.B. and Anderson, A.J. (2009) Digestive enzyme spectra in crustacean decapods (Paleomonidae, Portunidae and Penaeidae) feeding in the natural habitat . Aquaculture Research 40, 282291.Google Scholar
González-Gordillo, J.I., Arias, A.M., Rodríguez, A. and Drake, P. (2003) Recruitment patterns of decapod crustacean megalopae in a shallow inlet (SW Spain) related to life history strategies. Estuarine, Coastal and Shelf Science 56, 593607.Google Scholar
Havird, J.C., Mitchell, R.T., Henry, R.P. and Santos, S.R. (2016) Salinity-induced changes in gene expression from anterior and posterior gills of Callinectes sapidus (Crustacea: Portunidae) with implications for crustacean ecological genomics. Comparative Biochemistry and Physiology D 19, 3444.Google Scholar
Henry, R., Booth, C.E., Lallier, F.H. and Walsh, P.J. (1994) Post-exercise lactate production and metabolism in three species of aquatic and terrestrial decapod crustaceans. Journal of Experimental Biology 186, 215234.Google Scholar
Ituarte, R., Bas, C., Luppi, T. and Spivak, E. (2006) Interpopulational differences in the female reproductive cycle of the southwestern Atlantic estuarine crab Chasmagnathus granulatus Dana, 1851 (Brachyura: Grapsoidea: Varunidae). Scientia Marina 70, 709718.Google Scholar
Jimenez, A.G. and Kinsey, S.T. (2015) Energetics and metabolic regulation. The Natural History of the Crustacea 4, 391419.Google Scholar
Jin, X.K., Li, W.W., Cheng, L., Li, S., Guo, X.N., Yu, A.Q., Wu, M.H., He, L. and Wang, Q. (2012) Two novel short C-type lectin from Chinese mitten crab, Eriocheir sinensis, are induced in response to LPS challenged. Fish and Shellfish Immunology 33, 11491158.Google Scholar
Jin, X.K., Li, W.W., He, L., Lu, W., Cheng, L.L., Wang, Y., Jiang, H. and Wang, Q. (2011) Molecular cloning, characterization and expression analysis of two apoptosis genes, caspase and nm23, involved in the antibacterial response in Chinese mitten crab. Eriocheir sinensis. Fish and Shellfish Immunology 30, 263272.Google Scholar
Kelly, S.A., Panhuis, T.M. and Stoehr, A.M. (2012) Phenotypic plasticity: molecular mechanisms and adaptive significance. Comparative Physiology 2, 14171439.Google Scholar
Keppler, D. and Decker, K. (1974) Glycogen. Determination with amyloglucosidase. In Bergmeyer, H.U. (ed.) Methods of enzymatic analysis. New York, NY: Academic Press, pp. 11271131.Google Scholar
Krippeit-Drews, P., Drews, G. and Graszynski, K. (1989) Effects of ion substitution on the transepithelial potential difference of the gills of the fiddler crab Uca tangeri: evidence for a H+-pump in the apical membrane. Journal of Comparative Physiology B 159, 4349.Google Scholar
Larsen, E.H., Deaton, L.E., Onken, H., O'Donnell, M., Grosell, M., Dantzler, W.H. and Weihrauch, D. (2014) Osmoregulation and excretion. Comprehensive Physiology 4, 405573.Google Scholar
Lautier, J. and Lagarrigue, J.G. (1988) Lipid metabolism of the crab Pachygrasalinitys marmoratus during vitellogenesis. Biochemical Systematics and Ecology 16, 203212.Google Scholar
Lignot, J.H. and Charmantier, G. (2015) Osmoregulation and excretion. In Chang, E.S. and Thiel, M. (eds) The natural history of Crustacea. Volume 4. New York, NY: Oxford University Press, pp. 249284.Google Scholar
Lignot, J.H., Spanings-Pierrot, C. and Charmantier, G. (2000) Osmoregulatory capacity as a tool in monitoring the physiological condition and the effect of stress in crustaceans. Aquaculture 191, 209245.Google Scholar
Lorenzon, S., Edomi, P., Giulianini, P.G., Mettulio, R. and Ferrero, E.A. (2005) Role of biogenic amines and cHH in the crustacean hyperglycemic stress response. Journal of Experimental Biology 208, 33413347.Google Scholar
Lorenzon, S., Giulianini, P.G., Martinis, M. and Ferrero, E.A. (2007) Stress effect of different temperatures and air exposure during transport on physiological profiles in the American lobster Homarus americanus. Comparative Biochemistry Physiology A 147, 94102.Google Scholar
Luvizotto-Santos, R., Lee, J., Branco, Z., Bianchini, A. and Nery, L. (2003) Lipids as energy source during salinity acclimation in the euryhaline crab Chasmagnathus granulata Dana, 1851 (Crustacea-Grapsidae). Journal of Experimental Zoology A 295, 200205.Google Scholar
Maciel, F.E., Geihs, M.A., Cruz, B.P., Vargas, M.A., Allodi, S., Marins, L.F. and Nery, L.E.M. (2014) Melatonin as a signaling molecule for metabolism regulation in response to hypoxia in the crab Neohelice granulata. International Journal of Molecular Sciences 15, 2240522420.Google Scholar
Maciel, F.S., Valle, S., Kucharski, L.C. and Da Silva, R.M.S. (2008) Lactate metabolism in the muscle of the crab Chasmagnathus granulatus during hypoxia and post-hypoxia recovery. Comparative Biochemistry Physiology A 151, 6165.Google Scholar
Martins, T.L., Chittó, A.L.F., Rossetti, C.R., Brondani, C.K., Kucharski, L.C. and Da Silva, R.S.M. (2011) Effects of hypo- or hyperosmotic stress on lipid synthesis and gluconeogenic activity in tissues of the crab Neohelice granulata. Comparative Biochemistry Physiology A 158, 400405.Google Scholar
McNamara, J.C. and Faria, S.C. (2012) Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea: a review. Journal of Comparative Physiology B 182, 9971014.Google Scholar
Michiels, M.S., del Valle, J.C. and López Mañanes, A.A. (2013) Effect of environmental salinity and dopamine injections on key digestive enzymes in hepatopancreas of the euryhaline crab Cyrtograpsus angulatus (Decapoda: Brachyura: Varunidae). Scientia Marina 77, 129136.Google Scholar
Michiels, M.S., del Valle, J.C. and López Mañanes, A.A. (2015) Biochemical characteristics and modulation by external and internal factors of aminopeptidase-N activity in the hepatopancreas of a euryhaline burrowing crab. Journal of Comparative Physiology B 185, 501510.Google Scholar
Moore, S. (1968) Amino acid analysis: aqueous dimethyl sulfoxide as solvent for the nynhidrin reaction. Journal of Biological Chemistry 1242, 62816283.Google Scholar
Mourente, G., Medina, A., González, S. and Rodríguez, A. (1994) Changes in lipid class and fatty acid contents in the ovary and midgut gland of the female fiddler crab Uca tangeri (Decapoda, Ocypodiadae) during maturation. Marine Biology 121, 187197.Google Scholar
Ninlanon, W. (2011) Effect of pre-cooling on muscle yield of mud crab, Scylla serrata, during emersion storage. 2nd International Conference on Biotechnology and Food Science IPCBEE 7, 126129.Google Scholar
Oliveira, G.T. and Da Silva, R.S.M. (2000) Hepatopancreas gluconeogenesis during hyposmotic stress in Chamagnathus granulata crabs maintained on high-protein or carbohydrate-rich diets. Comparative Biochemistry Physiology B 127, 375381.Google Scholar
Pellegrino, R., Kucharski, L.C. and Da Silva, R.S.M. (2008) Effect of fasting and refeeding on gluconeogenesis and glyconeogenesis in the muscle of the crab Chasmagnathus granulatus previously fed a protein- or carbohydrate-rich diet. Journal of Experimental Marine Biology and Ecology 358, 144150.Google Scholar
Pennoyer, K., Himes, A.R. and Frederich, M. (2016) Effects of sex and color phase on ion regulation in the invasive European green crab, Carcinus maenas. Marine Biology 163, 137.Google Scholar
Pereira, K.C., Costa, P.M., Costa, M.H., Luque, A., DelValls, T.A. and Riba López, I. (2016) Effects of the increase of temperature and CO2 concentration on polychaetae Nereis diversicolor: simulating extreme scenarios of climate change in marine sediments. Hydrobiologia. 772, 161174. doi: 10.1007/s10750-016-2656-3.Google Scholar
Pfenning, D.W., Wund, M.A., Snell-Rood, E.C., Cruickshank, T., Schlichting, C.D. and Moczek, A.P. (2010) Phenotypic plasticity's impacts on diversification and speciation. Trends in Ecology and Evolution 25, 459467.Google Scholar
Piersma, T. and Drent, J. (2003) Phenotypic flexibility and the evolution of organismal design. Trends in Ecology and Evolution 18, 228233.Google Scholar
Pinoni, S., Méndez, E. and López Mañanes, A.A. (2015) Digestive flexibility in a euryhaline crab from a SW Atlantic coastal lagoon: alkaline phosphatase activity sensitive to salinity in the hepatopancreas. Journal of the Marine Biological Association of the United Kingdom 95, 11331140.Google Scholar
Pinoni, S.A., Iribarne, O. and López Mañanes, A.A. (2011) Between-habitat comparison of digestive enzymes activities and energy reserves in the SW Atlantic euryhaline burrowing crab Neohelice granulata. Comparative Biochemistry Physiology A 158, 552559.Google Scholar
Pinoni, S.A., Michiels, M.S. and López Mañanes, A.A. (2013) Phenotypic flexibility in response to environmental salinity in the euryhaline crab Neohelice granulata from the mudflat and the saltmarsh of a SW coastal lagoon. Marine Biology 160, 26472661.Google Scholar
Prymaczok, N.C., Pasqualino, V.M., Viau, V.E., Rodríguez, E.M. and Medesani, D.A. (2016) Involvement of the crustacean hyperglycemic hormone (CHH) in the physiological compensation of the freshwater crayfish Cherax quadricarinatus to low temperature and high salinity stress. Journal of Comparative Physiology B 186, 181191.Google Scholar
Ribeiro, K., Papa, L.P., Vicentini, C.A. and Franceschini Vicentini, I.B. (2014) The ultrastructural evaluation of digestive cells in the hepatopancreas of the Amazon River prawn, Macrobrachium amazonicum. Aquaculture Research 2014, 19.Google Scholar
Rodríguez-Tovar, F.J., Mayoral, E. and Santos, A. (2014) Influence of physicochemical parameters on burrowing activities of the fiddler crab Uca tangeri at the Huelva Coast (Southwest Spain): palaeoichnological implications. Ichnos 21, 147157.Google Scholar
Romano, N., Wu, X., Zeng, C., Genodepa, J. and Elliman, J. (2014) Growth, osmoregulatory responses and changes to the lipid and fatty acid composition of organs from the mud crab, Scylla serrata, over a road salinity range. Marine Biology Research 10, 460471.Google Scholar
Romano, N. and Zeng, C. (2012) Osmoregulation in decapod crustaceans: implications to aquaculture productivity, methods for potential improvement and interactions with elevated ammonia exposure. Aquaculture 334–337, 1223.Google Scholar
Romano, N., Zeng, C., Mat Noordin, N. and Ng, W.-K. (2012) Improving the survival, growth and hemolymph ion maintenance of early juvenile blue swimmer crabs, Portunus pelagicus, at hypo- and hyper-osmotic conditions through dietary long chain PUFA supplementation. Aquaculture 342–343, 2430.Google Scholar
Saborowski, R. (2015) Nutrition and digestion in physiology. In Chang, E.S. and Thiel, M. (eds) The natural history of Crustacea. Volume 4. New York, NY: Oxford University Press, pp. 285319.Google Scholar
Sánchez-Paz, A., García-Carreño, F., Muhlia-Almazan, A., Peregrino-Uriarte, A., Hernández-López, J. and Yepiz-Plascencia, G. (2006) Usage of energy reserves in crustaceans during starvation: status and future directions. Insect Biochemistry Molecular Biology 36, 241249.Google Scholar
Shinji, J., Kang, B., Okutsu, T., Banzai, K., Ohira, T., Tsutsui, N. and Wilder, M. (2012) Changes in crustacean hyperglycemic hormones in Pacific whiteleg shrimp Litopenaeus vannamei subjected to air exposure and low-salinity stresses. Fish Science 78, 833840.Google Scholar
Spivak, E.D. and Cuesta, J.A. (2009) The effect of salinity on larval development of Uca tangeri (Eydoux, 1835) (Brachyura: Ocypodidae) and new findings of the zoeal morphology. Scientia Marina 73, 297305.Google Scholar
Wang, X., Li, E. and Chen, L. (2016) A review of carbohydrate nutrition and metabolism in crustaceans. North American Journal of Aquaculture 78, 178187.Google Scholar
Wang, Z.-J., Lee, J., Sia, Y.X., Wanga, W., Yang, J.M., Yina, S.J., Qiana, G.Y. and Park, Y.D. (2014) A folding study of Antarctic krill (Euphausia superba) alkaline phosphatase using denaturants. International Journal of Biological Macromolecules 70, 266274.Google Scholar
Watford, M. (2015) Starvation: metabolic changes. In eLS (Encyclopedia of Life Sciences) [online publication] Hoboken, NJ: Wiley, pp. 17.Google Scholar
Wright, S.H. and Ahearn, G.A. (1997) Nutrient absorption in invertebrates. In Dantzler, W.H. (ed.) Handbook of physiology, section 13: comparative physiology. New York, NY: Oxford University Press, pp. 11371206.Google Scholar
Zar, J.H. (1999) Biostatistical analysis. Mahwah, NJ: Prentice-Hall, Inc.Google Scholar
Zeng, H., Ye, H., Li, S., Wang, G., Huang, J. (2010) Hepatopancreas cell cultures from mud crab, Scylla paramamosain. In Vitro Cellular & Developmental Biology – Animal 46, 431437.Google Scholar