Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-29T02:38:09.292Z Has data issue: false hasContentIssue false

The effects of a tidal-mixing front on the distribution of larval fish habitats in a semi-enclosed sea during winter

Published online by Cambridge University Press:  01 May 2014

Emilio A. Inda-Díaz*
Affiliation:
Universidad Autónoma de Nayarit, Ciencias Biológicas, Agropecuarias y Pesqueras, Km. 9 Carretera Tepic-Compostela, Xalisco, Nayarit, México 63780 Centro Interdisciplinario de Ciencias Marinas, Avenida Instituto Politécnico Nacional s/n, Col. Playa Palo de Sta. Rita, La Paz, B.C.S., México 23000
Laura Sánchez-Velasco
Affiliation:
Centro Interdisciplinario de Ciencias Marinas, Avenida Instituto Politécnico Nacional s/n, Col. Playa Palo de Sta. Rita, La Paz, B.C.S., México 23000
Miguel F. Lavín †
Affiliation:
Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, Baja California, México 22860
*
Correspondence should be addressed to: E.A. Inda-Díaz, Universidad Autónoma de Nayarit, Ciencias Biológicas, Agropecuarias y Pesqueras, Km. 9 Carretera Tepic-Compostela, Xalisco, Nayarit, México 63780 email: [email protected]

Abstract

We examined the effect of a tidal-mixing front on the three-dimensional distribution of larval fish habitats (LFHs) in the Midriff Archipelago Region in the Gulf of California during winter. Zooplankton and environmental variables were sampled from 0 to 200 m in 50 m strata. Four LFHs were defined in association with the front, two on the northern side and two on the southern side. The northern LFHs were: (1) the Mainland Shelf Habitat, located from the surface to 100 m depth on the north-east mainland shelf, characterized mainly by the presence of Citharichtys fragilis; and (2) the Wide Distribution Habitat, extending from north-west to south across the front from the surface to 200 m depth, dominated by the ubiquitous Engraulis mordax. The southern LFHs were: (3) the Eddy Zone Habitat, defined nearly on an anticyclonic eddy, with the highest larval abundance and richness from the surface to 100 m depth, dominated by Leuroglossus stilbius; and (4) the Southern Gulf Habitat, associated with low temperature waters from the southern Gulf of California, dominated by southern-gulf species (e.g. Scomber japonicus and Sardinops sagax). Despite the weak stratification and low thermal contrast (~1.5°C) across the south front compared to summer (~3°C), our results demonstrate that the frontal zone may influence the formation of planktonic habitats even during generally homogeneous periods, which may also be relevant in other regions of the world.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aceves-Medina, G., Jiménez-Rosenberg, S.P.A., Hinojosa-Medina, A., Funes-Rodríguez, R., Saldierna-Martínez, R.J. and Smith, P.E. (2004) Fish larvae assemblages in the Gulf of California. Journal of Fish Biology 65, 832847.CrossRefGoogle Scholar
Aceves-Medina, G., Palomares-García, R., Gómez-Gutiérrez, J., Robinson, C.J. and Saldierna-Martínez, R.J. (2009) Multivariate characterization of spawning and larval environments of small pelagic fishes in the Gulf of California. Journal of Plankton Research 31, 12831297.CrossRefGoogle Scholar
Alvarez-Borrego, S. and Lara-Lara, J.R. (1991) The physical environment and primary productivity of the Gulf of California. In Simoneit, B.R.T. and Drophin, J.P. (eds) The gulf and peninsular province of the Californias. Memoir 47. Tulsa, OK: American Association of Petroleum Geologists, pp. 555567.Google Scholar
Anderson, M., Gorley, R., Clarke, K. (2008) PERMANOVA for PRIMER: Guide to software and statistical methods. Plymouth: PRIMER-E Ltd, 214 pp.Google Scholar
Argote, M.L., Amador, A., Lavín, M.F. and Hunter, J.R. (1995) Tidal dissipation and stratification in the Gulf of California. Journal of Geophysical Research 100, 1610316118.CrossRefGoogle Scholar
Bakun, A. (1996) Patterns in the ocean: Ocean processes and marine population dynamics. La Paz, México: California Sea Grant College System, National Oceanic and Atmospheric Administration in cooperation with Centro de Investigaciones Biológicas del Noroeste.Google Scholar
Bruce, B.D., Evans, K., Sutton, C.A., Young, J.W and Furlani, D.M. (2001) Influence of mesoscale oceanographic processes on larval distribution and stock structure in jackass morwong (Nemadactylus macropterus: Cheilodactylidae). ICES Journal of Marine Science 58, 10721080.CrossRefGoogle Scholar
Clarke, K.R. and Ainsworth, M. (1993) A method of linking multivariate community structure to environmental variables structure. Marine Ecology Progress Series 92, 205219.CrossRefGoogle Scholar
Clarke, K.R. and Warwick, R.M. (2001) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth: PRIMER-E Ltd.Google Scholar
Contreras-Catala, F., Sánchez-Velasco, L., Lavín, M.F. and Godínez, V.M. (2012) Three-dimensional distribution of larval fish assemblages in an anticyclonic eddy in a semi-enclosed sea (Gulf of California). Journal of Plankton Research 34, 548562CrossRefGoogle Scholar
Costello, M. (2009) Distinguishing marine habitat classification concepts for ecological data management. Marine Ecology Progress Series 397, 253268.CrossRefGoogle Scholar
Danell-Jiménez, A., Sánchez-Velasco, L., Lavín, M.F. and Marinone, S.G. (2009) Three-dimensional distribution of larval fish habitats across a surface thermal/chlorophyll front in a semienclosed sea. Estuarine, Coastal and Shelf Science 85, 487496.CrossRefGoogle Scholar
Doyle, M.J., Morse, W.W. and Kendall, A.W. (1993) A comparison of larval fish assemblages in the temperate zone of the Northeast Pacific and Northwest Atlantic Oceans. Bulletin of Marine Science 53, 588644.Google Scholar
Field, J.G., Clarke, K.R. and Warwick, R.M. (1982) A practical strategy for analysing multispecies distribution patterns. Marine Ecology Progress Series 8, 3752.CrossRefGoogle Scholar
Fortier, L., Levasseur, M., Drolet, R. and Therriault, J. (1992) Export production and the distribution of fish larvae and their prey in a coastal jet frontal region. Marine Ecology Progress Series 85, 203218.CrossRefGoogle Scholar
García-Córdova, J., Peguero-Icaza, M., Sánchez-Velasco, L., Ocampo-Torres, A.I., Amador-Buenrostro, A., Cabrera-Ramos, C., Godínez-Sandoval, V.M., Lavín, M.F., Padilla-Pilotze, A.R., Rentería-Cano, M., Futema-Jiménez, S. and Cervantes-Duarte, R. (2007) Datos hidrográficos en el Golfo de California durante febrero de 2007. Campaña GOLCA 0702. B/O Francisco de Ulloa. Departamento de Oceanografía Física, Centro de Investigación Científica y Educación Superior de Ensenada (63343) 115 pp. Available at: http://oceanografia.cicese.mx/reportes/2007/Garcia_etal_63343.pdf (accessed 24 February 2014).Google Scholar
Green-Ruiz, Y.A. and Hinojosa-Corona, A. (1997) Study of the spawning area of the northern anchovy in the Gulf of California from 1990 to 1994, using satellite images of sea surface temperatures. Journal of Plankton Research 19, 957968.CrossRefGoogle Scholar
Hansen, D.V. and Poulain, P.M. (1996) Quality control and interpolations of WOCE-TOGA drifter data. Journal of Atmospheric and Oceanic Technology 13, 900909.2.0.CO;2>CrossRefGoogle Scholar
Heagney, E., Lynch, T., Babcock, R., Suthers, I. (2007) Pelagic fish assemblages assessed using mid-water baited video: standardising fish counts using bait plume size. Marine Ecology Progress Series 350, 255266.CrossRefGoogle Scholar
Iles, T.D. and Sinclair, M. (1982) Atlantic herring: stock discreteness and abundance. Science 215, 627633.CrossRefGoogle ScholarPubMed
Inda-Díaz, E.A., Sánchez-Velasco, L. and Lavín, M.F. (2010) Three-dimensional distribution of small pelagic fish larvae (Sardinops sagax and Engraulis mordax) in a tidal-mixing front and surrounding waters (Gulf of California). Journal of Plankton Research 32, 12411254.CrossRefGoogle Scholar
John, H., Mohrholz, V. and Lutjeharms, J.R.E. (2001) Cross-front hydrography and fish larval distribution at the Angola–Benguela Frontal Zone. Journal of Marine Systems 28, 91111.CrossRefGoogle Scholar
Kasai, A., Kimura, S., Nakata, H. and Okazaki, Y. (2002) Entrainment of coastal water into a frontal eddy of the Kuroshio and its biological significance. Journal of Marine Systems 37, 185198.CrossRefGoogle Scholar
Landaeta, M.F., Veas, R., Letelier, J. and Castro, L.R. (2008) Larval fish assemblages off central Chile upwelling ecosystem. Revista de Biología Marina y Oceanografía 43, 569584.CrossRefGoogle Scholar
Lavín, M.F. and Marinone, S.G. (2003) An overview of the physical oceanography of the Gulf of California. In Velasco-Fuentes, O., Sheinbaum, J. and Ochoa, J. (eds) Nonlinear processes in geophysical fluid dynamics. Dordrecht: Kluwer Academic Publishers, pp. 173204.CrossRefGoogle Scholar
Leduc, D., Rowden, A., Bowden, D., Nodder, S., Probert, P., Pilditch, C., Duineveld, G., Witbaard, R. (2012) Nematode beta diversity on the continental slope of New Zealand: spatial patterns and environmental drivers. Marine Ecology Progress Series 454, 3752.CrossRefGoogle Scholar
Lindo-Atichati, D., Bringas, F., Goni, G., Muhling, B., Muller-Karger, F. and Habtes, S. (2012) Varying mesoscale structures influence larval fish distribution in the northern Gulf of Mexico. Marine Ecology Progress Series 463, 245257.CrossRefGoogle Scholar
López, M., Candela, J. and Argote, M.L. (2006) Why does the Ballenas Channel have the coldest SST in the Gulf of California? Geophysical Research Letters 33, 15.CrossRefGoogle Scholar
Marinone, S.G. (2003) A three-dimensional model of the mean and seasonal circulation of the Gulf of California. Journal of Geophysical Research 108, 3325.CrossRefGoogle Scholar
Marinone, S.G. and Lavín, M.F. (2003) Residual circulation and mixing in the large islands region of the central Gulf of California. In: Velasco-Fuentes, O., Sheinbaum, J. and Ochoa, J. (eds.) Nonlinear processes in geophysical fluid dynamics. Dordrecht: Kluwer Academic Publishers, pp. 213236.CrossRefGoogle Scholar
Martínez Flores, G., Nava Sánchez, E.H. and Zaitsev, O. (2011) Teledetección de plumas de material suspendido influenciadas por escorrentía en el sur del Golfo de California. Oceánides 26, 118.Google Scholar
Martínez Sepúlveda, M. (1994) Descripcion de la capa mezclada superficial del Golfo de California. Ensenada, Baja California: Universidad Autónoma de Baja California.Google Scholar
McCune, B. and Grace, J.B. (2002) Analysis of ecological communities. Gleneden Beach, OR: MjM Software Design.Google Scholar
Mijail, A. (2004) Biodiversidad: aspectos conceptuales, análisis numérico, monitoreo y publicación de datos sobre biodiversidad. Managua, Nicaragua: Araucaria XXI.Google Scholar
Moser, H.G. (1996) The early stages of fishes in the California Current Region. CALCOFI Atlas No. 33. Lawrence, KS: Allen Press.Google Scholar
Moser, H.G. and Smith, P.E. (1993) Larval fish assemblages and oceanic boundaries. Fisheries Science 53, 283289.Google Scholar
Muhling, B.A., Beckley, L.E. and Olivar, M.P. (2007) Ichthyoplankton assemblage structure in two meso-scale Leeuwin Current eddies, eastern Indian Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography 54, 11131128.CrossRefGoogle Scholar
Nakata, H. (2000) Implications of meso-scale eddies caused by frontal disturbances of the Kuroshio Current for anchovy recruitment. ICES Journal of Marine Sciences 57, 143152.CrossRefGoogle Scholar
Navarro-Olache, L.F., Lavín, M.F., Álvarez-Sánchez, L.G. and Zirino, A. (2004) Internal structure of SST features in the central Gulf of California. Deep-Sea Research Part II: Topical Studies in Oceanography 51, 673687.CrossRefGoogle Scholar
Paden, C.A., Abbott, M.R. and Winant, C.D. (1991) Tidal and atmospheric forcing of the upper ocean in the Gulf of California: 1. Sea surface temperature variability. Journal of Geophysical Research 96, 1833718359.CrossRefGoogle Scholar
Peguero-Icaza, M., Sánchez-Velasco, L., Lavín, M.F., Marinone, S.G. and Beier, E. (2011) Seasonal changes in connectivity routes among larval fish assemblages in a semi-enclosed sea (Gulf of California). Journal of Plankton Research 33, 517533.CrossRefGoogle Scholar
Sánchez-Velasco, L., Shirasago, B., Cisneros-Mata, M.A. and Avalos-García, C. (2000) Spatial distribution of small pelagic fish larvae in the Gulf of California and its relation to the El Niño 1997–1998. Journal of Plankton Research 22, 16111618.CrossRefGoogle Scholar
Sánchez-Velasco, L., Beier, E., Avalos-García, C. and Lavín, M.F. (2006) Larval fish assemblages and geostrophic circulation in Bahía de La Paz and the surrounding southwestern region of the Gulf of California. Journal of Plankton Research 28, 118.CrossRefGoogle Scholar
Sánchez-Velasco, L., Jiménez-Rosenberg, S.P.A. and Lavín, M.F. (2007) Vertical distribution of fish larvae and its relation to water column structure in the southwestern Gulf of California. Pacific Science 61, 533548.CrossRefGoogle Scholar
Sánchez-Velasco, L., Lavín, M.F., Peguero-Icaza, M., León-Chávez, C.A., Contreras-Catala, F., Marinone, S.G., Gutiérrez-Palacios, I.V. and Godínez, V.M. (2009) Seasonal changes in larval fish assemblages in a semi-enclosed sea (Gulf of California). Continental Shelf Research 29, 16971710.CrossRefGoogle Scholar
Sánchez-Velasco, L., Lavín, M.F., Jiménez-Rosenberg, S.P.A., Montes, J.M. and Turk-Boyer, P.J. (2012) Larval fish habitats and hydrography in the Biosphere Reserve of the Upper Gulf of California (June 2008). Continental Shelf Research 33, 8999.CrossRefGoogle Scholar
Sánchez-Velasco, L., Lavín, M.F., Jiménez-Rosenberg, S.P.A., Godínez, V.M., Santamaría-del-Angel, E. and Hernández-Becerril, D.U. (2013) Three-dimensional distribution of fish larvae in a cyclonic eddy in the Gulf of California during the summer. Deep-Sea Research Part I: Oceanographic Research Papers 75, 3951.CrossRefGoogle Scholar
Smith, P.E. and Richardson, S.L. (1977) Standard techniques for pelagic fish egg and larva surveys. FAO Fisheries Technical Papers 175. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
Siver, P.A. and Lott, A.M. (2012) Biogeographic patterns in scaled chrysophytes from the east coast of North American. Freshwater Biology 57, 451466.CrossRefGoogle Scholar
Sokal, R.R. and Rohlf, F.J (2012) Biometry: the principles and practice of statistics in biological research. 4th edition.New York: W.H. Freeman and Co.Google Scholar
Somarakis, S. and Nikolioudakis, N. (2010) What makes a late anchovy larva? The development of the caudal fin seen as a milestone in fish ontogeny. Journal of Plankton Research 32, 317326.CrossRefGoogle Scholar
Tremblay, N., Gómez-Gutiérrez, J., Zenteno-Savín, T., Robinson, C.J. and Sánchez-Velasco, L. (2010) Role of oxidative stress in seasonal and daily vertical migration of three krill species in the Gulf of California. Limnology and Oceanography 55, 25702584.CrossRefGoogle Scholar
Trumpickas, J., Mandrak, N.E. and Ricciardi, A. (2011) Nearshore fish assemblages associated with introduced predatory fishes in lakes. Aquatic Conservation: Marine and Freshwater Ecosystems 21, 338347.CrossRefGoogle Scholar
Supplementary material: File

Inda-Díaz Supplementary Material

Supplementary Material I

Download Inda-Díaz Supplementary Material(File)
File 140.8 KB
Supplementary material: File

Inda-Díaz Supplementary Material

Supplementary Material II

Download Inda-Díaz Supplementary Material(File)
File 32.7 KB
Supplementary material: Image

Inda-Díaz Supplementary Material

Supplementary Material III

Download Inda-Díaz Supplementary Material(Image)
Image 3.6 MB
Supplementary material: File

Inda-Díaz Supplementary Material

Supplementary Material IV

Download Inda-Díaz Supplementary Material(File)
File 43.5 KB
Supplementary material: Image

Inda-Díaz Supplementary Material

Supplementary Material V

Download Inda-Díaz Supplementary Material(Image)
Image 3.6 MB