Published online by Cambridge University Press: 17 November 2008
Sampling was carried out in the Celtic Sea in May 1987 over Great Sole and Cockburn Banks, and in June 1991 over Little Sole Bank, to study relationships between bank topography, hydrography and plankton distribution.
Over Great Sole and Cockburn Banks, there were various patterns in the hydrography and plankton which could be related to the banks, although there were no significant correlations with water depth. Away from the shelf-edge, stratification was lower over the banks. Higher water temperatures (at 5 m and 100 m depth) and increased concentrations of copepod nauplii and adults occurred on either side of Cockburn Bank. Abundance of mackerel (Scomber scombrus) eggs and larvae increased towards the shelf-edge, with lower numbers over Cockburn Bank.
Over Little Sole Bank, water column stratification was negatively correlated with water depth. However, this was strongly influenced by shelf-edge mixing, which was reflected in reduced stratification towards the shelf-edge. Background levels of chlorophyll-a also increased from on-shelf towards the shelf-edge. Copepod adults and nauplii, as well as mackerel eggs and larvae were more abundant with distance onto the shelf.
There was partial retention of four Argos tracked drift buoys on the south-east flank of Little Sole Bank. The mean displacement rate of the buoys was 1.35 km day−1 over 10 days, with a mean dispersion of 1.2 km day−1. A simple one-dimensional coupled physical–biological model showed the potential influence of banks resulting in earlier stratification and resultant spring bloom. Considerations of the delay in transfer of production from primary to secondary production and the effects of drift and diffusion, suggested it was unlikely that any influence of the banks on production would be directly related to bank topography, but there might be some regional enhancement of production.