Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T23:01:43.626Z Has data issue: false hasContentIssue false

Distribution and morphological variation of colonies of the bryozoan Pentapora fascialis (Bryozoa: Cheilostomata) along the western coast of Italy

Published online by Cambridge University Press:  25 June 2008

C. Lombardi
Affiliation:
Section of Ecology, Department of ‘Ecologia del Territorio’, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy ENEA, Marine Environment Research Centre, PO Box 224, 19100 La Spezia, Italy
S. Cocito
Affiliation:
ENEA, Marine Environment Research Centre, PO Box 224, 19100 La Spezia, Italy
A. Occhipinti-Ambrogi
Affiliation:
Section of Ecology, Department of ‘Ecologia del Territorio’, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy
J.S. Porter*
Affiliation:
Institute of Biological Sciences, Edward Llwyd Building, Penglais Campus, University of Wales Aberystwyth, Aberystwyth, SY23 3DA, Wales, UK
*
Correspondence should be addressed to: J.S. Porter Institute of Biological Sciences, Edward Llwyd Building Penglais Campus, University of Wales AberystwythAberystwyth, SY23 3DA, Wales, UK email: [email protected]

Abstract

Bathymetric range, substrate, colony density, colony size, and some zoarial features (form of the colony and branches) of the carbonate reef building cheilostome bryozoan Pentapora fascialis (Pallas) were recorded from 15 localities along the western coast of Italy. A wide range in the depth distribution of colonies was observed (11 to 60 m). Colonies occurred on several different types of substrate including gorgonians, sponges, bedrock and rock boulders, in current swept areas. Density was approximately 1 colony/m2. The most frequent colony size-class was 10 to 20 cm in diameter and was typically found growing epizoically on gorgonians. Ellipsoidal colony forms with expanded, foliaceous laminae were characteristic of larger colonies; these frequently grew on rock substrates. Subspherical colonies with a diameter less than 20 cm grew as epizoans and had a narrow branches structure. This information will help to inform decisions on taxonomic discrepancies within the Pentaporidae. In addition the data provide a useful baseline for the future estimation of a carbonate budget in the region.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amini, Z.Z., Adabi, M.H., Burrett, C.F. and Quilty, P.G. (2004) Bryozoan distribution and growth form associations as a tool in environmental interpretation, Tasmania, Australia. Sedimentary Geology 167, 115.CrossRefGoogle Scholar
Augier, H. (1982) Inventaire et classification des biocenoses marines benthiques de la Méditerranée. Conseil de l'Europe Strasbourg, Occasional Publications No. 25, 59 pp.Google Scholar
Bardat, J., Bensettiti, F. and Hindermeyer, X. (1997) Approche méthodologique de l'évaluation d'espaces naturels—exemple de l'application de la Directive Habitats en France. Ecologie 28, 4559.Google Scholar
Bellan-Santini, D., Bellan, G., Bitar, G., Harmelin, J.G. and Pergent, G. (2002) Manuel d'interprétation des types d'habitats marins pour la sélection des sites à inclure dans les inventaires nationaux de sites naturels d'intérêt pour la conservation. Programme des Nations Unies pour l'Environment: Plan d'Action du Méditerranée, Occasional Publications 225 pp.Google Scholar
Cocito, S., Sgorbini, S. and Bianchi, C.N. (1998) Aspects of the biology of the bryozoan Pentapora fascialis in the northwestern Mediterranean. Marine Biology 131, 7382.CrossRefGoogle Scholar
Cocito, S. and Ferdeghini, F. (2000) Morphological variation in Pentapora fascialis (Cheilostomatida, Ascophorina). In Herrera Cubilla, A. and Jackson, J.B.C. (eds) Proceedings of the 11th International Bryozoology Association Conference, Panama, Smithsonian Tropical Reseach Institute, pp. 176181.Google Scholar
Cocito, S. and Ferdeghini, F. (2001) Carbonate standing stock and carbonate production of the bryozoan Pentapora fascialis in the north-western Mediterranean. Facies 45, 2530.CrossRefGoogle Scholar
Cocito, S. (2004) Bioconstruction and biodiversity: their mutual influence. Scientia Marina 68, 137144.CrossRefGoogle Scholar
Cocito, S., Novosel, M. and Novosel, A. (2004) Carbonate bioformations around underwater springs in the north-eastern Adriatic Sea. Facies 50, 1317.CrossRefGoogle Scholar
Gautier, Y.V. (1962) Recherches écologiques sur les bryozoaires chilostomes en Méditerranée occidentale. Recueil des Travaux de la Station Marine d'Endoume No. 38, 434 pp.Google Scholar
Gili, J.M. and Ros, J.D. (1985) Study and cartography of the benthic communities of Medes Islands (NE Spain). PSZN. Marine Ecology 6, 219234.CrossRefGoogle Scholar
Harmelin, J.G. and Capo, S. (2002) Effects of sewage on bryozoan diversity in Mediterranean rocky bottoms. In Jackson, P.W. et al. (eds) Bryozoan studies. Sassenheim: Swets and Zeitlinger Publishers, pp. 151158.Google Scholar
Hageman, S., James, N.P. and Bone, Y. (1997) Cool water carbonate production from epizoic bryozoans on ephemeral substrates. Palaios 15, 3348.2.0.CO;2>CrossRefGoogle Scholar
Hayward, P.J. and McKinney, F.K. (2002) Northern Adriatic Bryozoa from the vicinity of Rovinj, Croatia. Bulletin of the American Museum of Natural History, New York No. 270, 139 pp.Google Scholar
Hayward, P.J. and Ryland, J.S. (1999) Cheilostomatous Bryozoa, part 2: Hippothooidea–Celleporoidea. In Barnes, R.S.K. and Crothers, J.H. (eds) Synopses of the British fauna (New Series). Shrewsbury: Field Studies Council, pp. 1416.Google Scholar
Lombardi, C., Cocito, S., Occhipinti-Ambrogi, A. and Hiscock, K. (2006) The influence of seawater temperature on zooid size and growth rate in Pentapora fascialis (Bryozoa: Cheilostomata). Marine Biology 149, 11031109.CrossRefGoogle Scholar
McKinney, F.K. and Jackson, J.B.C. (1989) Bryozoan evolution. Chicago: University of Chicago Press.Google Scholar
McKinney, F.K. (2007) The northern Adriatic ecosystem. New York: Columbia University Press.Google Scholar
Mustapha, B.K., Komatsu, T., Hattour, A., Sammari, C.H. and Zarrouk, S. (2002) Bionomie des étages infra et circalittoral du golfe de Gabès. Bulletin Institut National des Sciences et Technologies de la Mer Salammbộ 29, 116.Google Scholar
Novosel, M., Olujic, G., Cocito, S. and Požar-Domac, A. (2004) Submarine freshwater springs: a unique habitat for the bryozoan Pentapora fascialis. In Moyano, et al. (eds) Bryozoan studies. London: Taylor and Francis Group, pp. 215221.Google Scholar
O'Dea, A. (2005) Zooid size parallels contemporaneous oxygen isotopes in a large colony of Pentapora foliacea (Bryozoa). Marine Biology 146, 10751081.CrossRefGoogle Scholar
Pérès, J.M. and Picard, J. (1964) Nouveau manuel de bionomie benthique de la Méditerranée. Recueil des Travaux de la Station Marine d'Endoume No. 31, 137 pp.Google Scholar
Sala, E., Garrabou, J. and Zabala, M. (1996) Effects of diver frequentation on Mediterranean sublittoral populations of the bryozoan Pentapora fascialis. Marine Biology 126, 451459.CrossRefGoogle Scholar
Smith, A.M., Stewart, B., Key, M.M. Jr and Jamet, C.M. (1998) Growth and carbonate production by Adeonellopsis (Bryozoa: Cheilostomata) in Doubtful Sound, New Zealand. Paleogeography, Paleoclimatology, Paleoecology 175, 201210.CrossRefGoogle Scholar
Taylor, P. and Wilson, M.A. (2003) Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews 62, 1103.CrossRefGoogle Scholar
Zabala, M. and Maluquer, P. (1988) Illustrated keys for the classification of Mediterranean Bryozoa. Barcelona: Treballs Museum Zoologia.Google Scholar