Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-15T17:14:14.806Z Has data issue: false hasContentIssue false

Diet, prey narcotization and biochemical composition of salivary glands secretions of the volutid snail Odontocymbiola magellanica

Published online by Cambridge University Press:  12 February 2010

Gregorio Bigatti*
Affiliation:
LARBIM, Centro Nacional Patagónico CENPAT–CONICET, Boulevard Brown 2915, U9120ACV Puerto Madryn, Chubut, Argentina
Hernán Sacristán
Affiliation:
Departamento de Química Orgánica–CIHIDECAR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
María C. Rodríguez
Affiliation:
Departamento de Biodiversidad, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
Carlos A. Stortz
Affiliation:
Departamento de Química Orgánica–CIHIDECAR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
Pablo E. Penchaszadeh
Affiliation:
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Museo Argentino de Ciencias Naturales Bernardino Rivadavia—CONICET, Avenida Ángel Gallardo 470, Buenos Aires, Argentina
*
Correspondence should be addressed to: G. Bigatti, LARBIM, Centro Nacional Patagónico CENPAT–CONICET, Boulevard Brown 2915, U9120ACV Puerto Madryn, Chubut, Argentina email: [email protected]

Abstract

Odontocymbiola magellanica is a neogastropod very common in Patagonian shallow waters. It feeds exclusively on molluscs inhabiting the same benthic community. Field studies showed that prey preferences are live gastropods (54%) and bivalves (46%). When no living prey are available they change their trophic behaviour to carrion or cannibalism. Feeding mechanisms observations showed that prey are not asphyxiated by the snail's foot as suggested before for the Volutidae family; they are narcotized by saliva introduced in a cavity made by the foot where prey are immobilized. Saliva is produced by the salivary (SG) and accessory salivary glands (AG) and has a pH around 10, relaxing prey muscles, which are consumed alive. Secretions from AG and aqueous extracts of SG and AG were mainly composed of proteins and glycoproteins, though SDS-PAGE gels revealed that salivary proteins were richer in higher molecular weight bands. Fractionation of secretions from AG on Bio-Gel P-100 yielded only one peak. SDS-PAGE showed that it consisted of only one band (MW 51.3 kDa). Microanalysis of cations showed a higher concentration of calcium and magnesium in the accessory salivary gland. Hypotheses of function of different glands are given in relation to feeding behaviour and anatomy of O. magellanica.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albersheim, P., Nevins, D.J., English, P.D. and Karr, A. (1967) A method for the analysis of sugars in plant cell wall polysaccharides by gas–liquid chromatography. Carbohydrate Research 5, 340345.CrossRefGoogle Scholar
Andrews, E.B. (1991) The fine structure and function of the salivary glands of Nucella lapillus (Gastropoda: Muricidae). Journal of Molluscan Studies 57, 111126.CrossRefGoogle Scholar
Andrews, E.B., Page, A.M. and Taylor, J.D. (1999) The fine structure and function of the anterior foregut glands of Cymatium intermedius (Cassoidea: Ranellidae). Journal of Molluscan Studies 65, 119.CrossRefGoogle Scholar
Andrews, E.B. and Thorogood, K.E. (2005) An ultrastructural study of the gland of Leiblein of muricid and nassarid neogastropods in relation to function, with a discussion on its homologies in other caenogastropods. Journal of Molluscan Studies (online doi:10.1093/mollus/eyi036).CrossRefGoogle Scholar
Bigatti, G. (2005) Anatomía, ecología y reproducción del caracol rojo Odontocymbiola magellanica (Gastropoda: Volutidae) en golfos norpatagónicos. PhD thesis. Universidad de Buenos Aires, Buenos Aires, Argentina.Google Scholar
Bigatti, G. and Penchaszadeh, P.E. (2005) Imposex in Odontocymbiola magellanica (Gmelin, 1791) (Mollusca: Gastropoda) in Patagonia. Comunicaciones de la Sociedad Malacológica del Uruguay 9, 377379.Google Scholar
Bigatti, G. and Carranza, A. (2007) Phenotypic variability associated with the occurrence of imposex in Odontocymbiola magellanica (Gmelin, 1791) from Golfo Nuevo, Patagonia. Journal of the Marine Biological Association of the United Kingdom 87, 755759.CrossRefGoogle Scholar
Bigatti, G., Penchaszadeh, P.E. and Cledón, M. (2007) Age, growth and somatic production in the volutid gastropod Odontocymbiola magellanica from Golfo Nuevo, Patagonia Argentina. Marine Biology 150, 11991204. doi: 10.1007/s00227-006-0401-6.CrossRefGoogle Scholar
Bigatti, G. and Ciocco, N.F. (2008) Volutid snails as an alternative resource for artisanal fisheries in northern patagonic gulfs. Availability and first suggestions for diving catches. Journal of Shellfish Research 27, 417421.CrossRefGoogle Scholar
Bigatti, G., Marzinelli, E.M. and Penchaszadeh, P.E. (2008) Seasonal reproduction and sexual maturity of Odontocymbiola magellanica (Neogastropoda: Volutidae). Invertebrate Biology 127, 314326. doi: 10.1111/j.1744-7410.2008.00139.x.CrossRefGoogle Scholar
Bigatti, G., Primost, M.A, Cledón, M., Averbuj, A., Theobald, N., Gerwinski, W., Arntz, W., Morriconi, E. and Penchaszadeh, P.E. (2009) Contamination by TBT and imposex biomonitoring along 4700 km of Argentinean shoreline (SW Atlantic: from 36°S to 54°S). Marine Pollution Bulletin 58, 695701. doi:10.1016/j.marpolbul.2009.01.001.CrossRefGoogle Scholar
Bigatti, G., Sánchez Antelo, C.J.M., Miloslavich, P. and Penchaszadeh, P.E. (2009b) Adelomelon ancilla: a predator neogastropod in Patagonian benthic communities. Nautilus 123, 159165.Google Scholar
Boss, K.J. (1971) Critical estimate of the number of recent mollusca. Occasional Papers on Mollusks Museum of Comparative Zoology Harvard University 3, 81135.Google Scholar
Botto, F., Bremec, C., Marecos, A., Shcejter, L., Lasta, M. and Iribarne, O. (2006) Identifying predators of the SW Atlantic Patagonian scallop Zygochlamys patagonica using stable isotopes. Fisheries Research 81, 4550.CrossRefGoogle Scholar
Casas, G., Scrosati, R. and Piriz, M.L. (2004) The invasive kelp Undaria pinnatifida (Phaeophyceae, Laminariales) reduces native seaweed diversity in Nuevo Gulf (Patagonia, Argentina). Biological Invasions 6, 411416.CrossRefGoogle Scholar
Clench, W.J. and Turner, R.D. (1964) The subfamilies Volutinae, Zidoninae, Odontocymbiolinae and Calliotectinae in the Western Atlantic. Johnsonia 4, 129180.Google Scholar
Dodgson, K.S. and Price, R.G. (1962) A note on the determination of ester sulphate content of sulphated polysaccharides. Biochemical Journal 84, 106110.CrossRefGoogle ScholarPubMed
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. (1956) Colorimetric method of determination of sugars and related substances. Analytical Chemistry 28, 350356.CrossRefGoogle Scholar
Fairbanks, O., Steck, T.L. and Wallach, D.F. (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10, 26062617.CrossRefGoogle ScholarPubMed
Fillisetti-Cozzi, T.M.C. and Carpita, N.C. (1991) Measurement of uronic acids without interference form neutral sugars. Analytical Biochemistry 197, 157162.CrossRefGoogle Scholar
Galván, D.E., Botto, F., Parma, A.M., Bandieri, L., Mohamed, N. and Iribarne, O.O. (in press) Food partitioning and spatial subsidy in shelter-limited fish species inhabiting patchy reefs of Patagonia. Journal of Fish Biology.Google Scholar
Graham, A. (1932) On the structure and function of the alimentary canal of the limpet. Transactions of the Royal Society of Edinburgh 57, 287308.CrossRefGoogle Scholar
Hames, B.D. (1990) One dimensional polyacrylamide gel electrophoresis in gel electrophoresis of proteins. A practical approach. New York: Oxford University Press.Google Scholar
Hori, T., Sugita, M., Ando, S., Kuwahara, M., Kumauchi, K., Sugie, E. and Itasaka, O. (1981) Characterization of a novel glycosphingolipid, ceramide monosaccharide isolated from spermatozoa of the fresh water bivalve Hyriopsis schlegelii. Journal of Biological Chemistry 256, 1097910985.CrossRefGoogle Scholar
Itasaka, O. (1966) Biochemistry of shellfish lipid. VI. Occurrence of 3-O-methylfucose in Corbicula glycolipid. Journal of Biochememistry (Tokyo) 60, 435438.CrossRefGoogle ScholarPubMed
Jay, G.D., Culp, D.J. and Jahnke, M.R. (1990) Silver staining of extensively glycosylated proteins on sodium dodecyl sulphate polyacrylamide gels: enhancement by carbohydrates-binding dyes. Analytical Biochemistry 185, 324330.CrossRefGoogle Scholar
Katz, B. and Miledi, R. (1967) The timing of calcium action during neuromuscular transmission. Journal of Physiology 189, 535544.CrossRefGoogle ScholarPubMed
Ghose, K.C. (1961) Observations on the digestive enzymes and cellulolytic bacteria of the giant land snail Acatina fulica and their occurrence in the Gastropoda. Proceedings of the Zoological Society of London 137, 127133.CrossRefGoogle Scholar
Lane Smith, R. and Gilkerson, E. (1979) Quantitation of glycosaminoglycan hexosamine using 3-methyl-2-benzothiazolone hydrazone hydrochloride. Analytical Biochemistry 98, 478480.CrossRefGoogle Scholar
Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.CrossRefGoogle ScholarPubMed
Lasta, M.L., Roux, A. and Bremec, C. (2000) Caracoles marinos de interés pesquero. Moluscos gasterópodos volutidos. Informe Técnico INIDEP 31, 13 pp.Google Scholar
Leal, J.H. and Bouchet, P. (1989) New deep-water Volutidae from off southeastern Brazil (Mollusca: Gastropoda). Nautilus 103, 12.Google Scholar
Leal, J.H. and Harasewych, M.G. (2005) Tractolira delli, a new Volutidae (Mollusca: Gastropoda: Neogastropoda) from the abyssal plains off Antarctica. Zootaxa 1071, 3945.CrossRefGoogle Scholar
Llinas, R. (1994) Calcium in synaptic transmission. In Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J.D. (eds) Molecular biology of the cell. Barcelona: Ediciones Omega.Google Scholar
Lowry, O.H., Farr, A.C. and Randall, R.S. (1951) Protein measurement with the Folin Phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Marche-Marchad, I. (1977) Remarks on the biology, ecology and systematic of the genus Cymbium Roeding, 1798 (Gastropoda: Prosobranchia). La Conchiglia 104–105, 39.Google Scholar
Morton, B. (1986) The diet and prey capture mechanism of Melo melo (Prosobranchia: Volutidae). Journal of Molluscan Studies 52, 156160.CrossRefGoogle Scholar
Nakai, H., Iisuka, T., Okuyama, M., Mori, H., Chiba, S. and Kimura, A. (2006) Ion-dependant α-glucosidase from ligament and digestive caecum of scallop. XXIII International Carbohydrate Symposium, Whistler, Canada.Google Scholar
Novelli, R. and Novelli, A.U.G. (1982) Algumas considerações sobre a subfamilia Zidoninae e notas sobre a anatomia de Adelomelon brasiliana (Lamarck, 1811), Mollusca, Gastropoda, Volutidae. Atlántica, Rio Grande 5, 2334.Google Scholar
Pesentseva, M.S., Kusaykin, M.I., Anastiuk, S.D., Sova, V.V. and Zvyagintseva, T.N. (2006) Two forms of laminarinase from the marine mollusk Littorina kurila. XXIII International Carbohydrate Symposium, Whistler, Canada.Google Scholar
Ponder, W.F. (1970) The morphology of Alcithoe arabica (Gastropoda: Volutidae). Malacological Review 3, 127165.Google Scholar
Ponder, W.F. (1973) The origin and evolution of the Neogastropoda. Malacologia 12, 295338.Google ScholarPubMed
Rao, M.B. (1975) Some observations on feeding, anatomy, histology of the digestive tract and digestive enzymes in the limpet Cellana radiata (born) (Gastropoda: Prosobranchia). Journal of Molluscan Studies 41, 309320.CrossRefGoogle Scholar
Siegman, M.J., Moers, S.U., Li, C., Narayan, S., Trinkle-Mulcahy, L., Watabe, S., Hartshorne, D.J. and Butler, T.M. (1997) Phosphorylation of a high molecular weight (~600kDa) protein regulates catch in invertebrate smooth muscle. Journal of Muscle Research and Cell Motility 18, 655670.CrossRefGoogle Scholar
Taylor, J.D., Morris, N.J. and Taylor, C.N. (1980) Food specialization and the evolution of predatory prosobranch gastropods. Palaeontology 23, 375409.Google Scholar
Verigina, N.S., Burtseva, Y.V., Ermakova, S.P., Sova, V.V., Pivkin, M.V. and Zvyagintseva, T.N. (2005) Metabolites of marine organisms as regulators of O-glycosylhydrolases. Applied Biochemistry and Microbiology 41, 354360.CrossRefGoogle Scholar
Ward, J. (1966) Feeding, digestion and histology of the digestive tract in the keyhole limpet Fissurella barbadensis (Gmelin). Bulletin of Marine Science 16, 668684.Google Scholar
Weaver, C.S. and Dupont, J.E. (1970) Living volutes. A monograph of the recent Volutidae of the world. Delaware Museum Natural History Series 1: I–XV: 1–375, pl. 1–79, Green Ville, Delaware.CrossRefGoogle Scholar
Wilson, B.R. and Gillet, K. (1971) Australian shells. Sydney: A.H & A.W. Reed.Google Scholar