Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-23T16:00:17.985Z Has data issue: false hasContentIssue false

The determination of ammonia and total ionic inorganic nitrogen in sea water

Published online by Cambridge University Press:  11 May 2009

J. P. Riley
Affiliation:
The Department of Oceanography, The University, Liverpool
P. Sinhaseni
Affiliation:
The Department of Oceanography, The University, Liverpool

Extract

Microdiffusion using a Cavett flask has been employed instead of vacuum distillation for the separation of ammonia from sea water; diffusion is approximately 75% complete after 24 h at 70°C. The recovered ammonia is determined by a modification of the phenate-hypochlorite method.

Raney nickel in the presence of ethylenediamine-tetraacetic acid has been used for the reduction of nitrate and nitrite to ammonia. The latter is separated by microdiffusion and determined colorimetrically. The method showed a coefficient of variation of 2·5% on a sample of sea water containing

No interference was encountered from a variety of organic nitrogen compounds.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1957

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brandt, K., 1927. Stickstoffverbindungen im Meere I. Wiss. Meeresunters. (Abt. Kiel), Bd. 20, p. 212.Google Scholar
Cavett, J. W., 1937. The determination of alcohol in blood and other body fluids. J. Lab. din. Med., Vol. 23, pp. 543–6.Google Scholar
Conway, E. J., 1950. Microdiffusion Analysis and Volumetric Error, 3rd ed. 391 pp. London: Crosby Lockwood.Google Scholar
Crowther, A. B. & Large, R. S., 1956. Improved conditions for the sodium-phenoxide-sodium hypochlorite method for the determination of ammonia. Analyst, Vol. 81, p. 64.Google Scholar
Gad-Andresen, K. L., 1923. A method for quantitative determination of ammonia, nitrate and nitrite, together with other nitrogenous compounds in sea-water. Publ. Circ. Cons. Explor. Mer, No. 82, pp. 1417.Google Scholar
Krogh, A., 1934. A method for the determination of ammonia in water and air. Biol. Bull, Woods Hole, Vol. 57, pp. 126–31.Google Scholar
Mozingo, R., Wolf, D. E., Harris, S. A. & Folkes, K., 1943. Hydrogenolysis of sulphur compounds by Raney nickel catalyst. J. Amer. chem. Soc, Vol. 65, p. 1013.Google Scholar
Raben, E., 1905 a. Weitere Mitteilungen iiber quantitative Bestimmungen von Stickstoffverbindungen und gelöster Kieselsäure im Meerwasser. Wiss. Meeresunters. (Abt. Kiel), Bd. 8, pp. 279–80.Google Scholar
Raben, E., 1905 b. Über quantitative Bestimmung von Stickstoffverbindungen im Meerwasser. Wiss. Meeresunters. (Abt. Kiel), Bd. 8, pp. 8198.Google Scholar
Raben, E., 1910. Dritte Mitteilung über quantitative Bestimmungen von Stickstoffverbindungen und von gelöster Kieselsaure im Meerwasser. Wiss. Meeresunters. (Abt. Kiel), Bd. 11, pp. 305–19.Google Scholar
Raben, E., 1914. Vierte Mitteilung iiber quantitative Bestimmungen von Stickstoffverbindungen im Meerwasser und Boden sowie von gelöster Kieselsäure im Meerwasser. Wiss. Meeresunters. (Abt. Kiel), Bd. 16, pp. 207–29.Google Scholar
Riley, J. P., 1953. The spectrophotometric determination of ammonia in natural waters, with particular reference to sea-water. Anal. chim. acta, Vol. 9, pp. 575–89.Google Scholar
Thorpe, T. E. & Morton, E. H., 1871. Über das Wasser des Irländischen Meeres. Liebig's Ann. Chem., Bd. 158, dp. 122–31.Google Scholar
Van Dalen, E., 1951. Schnelle Bestimmung von Nitrat in losung mittels katalytischer Reduktion mitt Wasserstoff. Anal. chim. acta, Vol. 5, pp. 463–71.Google Scholar