Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-23T20:57:17.375Z Has data issue: false hasContentIssue false

Cytological features of the giant neurons controlling electric discharge in the ray, Torpedo

Published online by Cambridge University Press:  11 May 2009

B. L. Roberts
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth
K. P. Ryan
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth

Extract

‘Giant’ nerve cells have always attracted considerable interest because of the technical possibilities they offer to experimental biologists, for as well as being easy to impale with microelectrodes they can be dissected away from non-nervous tissues and used for bio-chemical analyses.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albe-Fessard, D. & Buser, P., 1952. Réception intracellulaire de l'activité d'une neurone des lobes electriques de Torpedo marmorata. Compte rendu hebdomadaire des séances de l'Académie des sciences, 235, 1688.Google Scholar
Albe-Fessard, D. A. & Szabo, T., 1954. Étude microphysiologique du neurone intermédiare d'une chaine reflexe disynaptique. Compte rendu des séances de la Société de biologie, 148, 281–4.Google Scholar
Belbenoit, P. & Bauer, R., 1972. Video recordings of prey capture behaviour and associated electric organ discharge of Torpedo marmorata. Marine Biology, 17, 93–9.CrossRefGoogle Scholar
Bennett, M. V. L., 1968. Neural control of electric organs. In: The Central Nervous System and Fish Behaviour, ed. D., Ingle, 147–69. Chicago: The University Press.Google Scholar
Bennett, M. V. L., Crain, S. M. & Grundfest, H., 1959. Electrophysiology of supramedullary neurons. Journal of General Physiology, 43, 1, 159–88, 11, 189–219, in, 221–50.Google ScholarPubMed
Bennett, M. V. L., Nakajima, Y. & Pappas, G. D., 1967. Physiology and ultrastructure of electrotonic junctions. III. Giant electromotor neurons of Malapterus electricus. Journal of Neurophysiology, 30, 209–35.CrossRefGoogle Scholar
Cajal, R., 1909. Histologie du système nerveux de l'homme et des vertebrés, 2, 993 pp. Paris: Maloine.CrossRefGoogle Scholar
Dahlgren, U., 1915. Structure and polarity of the electric motor nerve cell in Torpedoes. Publications. Carnegie Institution of Washington, 212, 213–56.Google Scholar
Dunant, Y., Gautron, J., Israel, M., Lesbats, B. & Manaranche, R., 1972. Acetylcholine compartments in stimulated electric organ of Torpedo marmorata. Journal of Neurochemistry, 19, 19872002.CrossRefGoogle ScholarPubMed
Ewart, J. C, 1890. The cranial nerves of the Torpedo. Proceedings of the Royal Society, B, 47, 290–1.Google Scholar
Ewart, J. C, 1893. The electric organ of the skate: Note on an electric centre in the spinal cord. Proceedings of the Royal Society, B, 53, 388–91.Google Scholar
Fritsch, G., 1886. Ueber einige bemerkenswerthe Elemente des Central-nervensystems von Lophius piscatorius. Archiv für mikroskopische Anatomie und Entwicklungstnechanik, 27, 1331.CrossRefGoogle Scholar
Fritsch, G., 1890. Die Elektrischen Fische. Vol. II. Die Torpedinen. pp. 1146. Leipzig: Verlag von Veit-Camp.Google Scholar
Holt, S. J. & Hicks, R. M., 1961. The localization of acid phosphatase in rat liver cells as revealed by combined cytochemical staining and electron microscopy. Journal of Cell Biology, 11, 4766.CrossRefGoogle ScholarPubMed
Hyden, H., 1943. Die Funktion des Kernkorperchens bei den Eiweissbildung in Nervenzellen. Zeitschrift für mikroskopisch-anatomische Forschung, 54, 96130.Google Scholar
Mencl, E., 1902. Einige Bemerkungen Zur histologie des elektrischen lappens bei Torpedo marmorata. Archiv für mikroskopisch Anatomie und Entwicklungsmeckanik, 60, 181–9.Google Scholar
Miledi, R. & Potter, L. T., 1971. Acetylcholine receptors in muscle fibres. Nature, London, 233, 599603.CrossRefGoogle ScholarPubMed
Nakajima, S. & Kusano, K., 1966. Behaviour of delayed current under voltage clamp in the supramedullary neurones of puffer. Journal of General Physiology, 49, 613–28.CrossRefGoogle ScholarPubMed
Nakajima, Y., 1970. Fine structure of the medullary command nucleus of the electric organ of the skate. Tissue and Cell, 2, 4758.CrossRefGoogle ScholarPubMed
Roberts, B. L. & Ryan, K. P., 1971. The fine structure of the lateral-line sense organs of dogfish. Proceedings of the Royal Society, B, 179, 157–69.Google Scholar
Rosenbluth, J., 1962. Subsurface cisterns and their relationships to the neuronal plasma membrane. Journal of Cell Biology, 13, 405–21.CrossRefGoogle Scholar
Sheridan, M. N., 1965. The fine structure of the electric organ of Torpedo marmorata. Journal of Cell Biology, 24, 129–41.CrossRefGoogle ScholarPubMed
Suzuki, N., 1936. On the lobus electricus and the nervi electrici in Narke japonica. Journal of Oriental Medicine, 25, 17.Google Scholar
Szabo, T., 1955. Quelques précisons sur le noyau de commande centrale de la décharge électrique chez la Raie (Raja clavata). Journal de physiologie, 47, 283–5.Google Scholar
Thomas, P. K. & Young, J. Z., 1949. Internode lengths in the nerves of fishes. Journal of Anatomy, 83, 336–50.Google ScholarPubMed
Wagner, R., 1846. Handwörterbuch der Physiologie. 3, 360406. Braunschweig: Vieweg.Google Scholar
Whittaker, V. P., Essman, W. B. & Dowe, G. H. C., 1972. The isolation of pure cholinergic synaptic vesicles from the electric organs of elasmobranch fish of the family Torpedinidae. Biochemical Journal, 128, 833–45.CrossRefGoogle ScholarPubMed