Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T12:03:21.611Z Has data issue: false hasContentIssue false

Copepods of the off-shore waters of Caribbean Colombian Sea and their response to oceanographic regulators

Published online by Cambridge University Press:  02 May 2022

Edgar Fernando Dorado-Roncancio
Affiliation:
Programa de posgrados, Maestría en Ciencias-Biología, Línea Biología Marina e Instituto de Estudios en Ciencias del Mar – CECIMAR, Universidad Nacional de Colombia, Sede Caribe, Santa Marta, Magdalena, Colombia Instituto de Investigaciones Marinas y Costeras de Colombia, INVEMAR, Programa de Biodiversidad de Ecosistemas Marinos, Santa Marta, Magdalena, Colombia
Johanna Medellín-Mora*
Affiliation:
Instituto Milenio de Oceanografía (IMO) y Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso, Valparaíso, Chile
José Ernesto Mancera-Pineda
Affiliation:
Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
Matías Pizarro-Koch
Affiliation:
Instituto Milenio de Oceanografía (IMO) y Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile Millennium Nucleus Understanding Past Coastal Upwelling Systems and Environmental Local and Lasting Impacts (UPWELL), Agencia Nacional de Investigación y Desarrollo (ANID) Millennium Science Initiative, Coquimbo 1780000, Chile
*
Author for correspondence: Johanna Medellín-Mora, E-mail: [email protected]

Abstract

Seven oceanographic expeditions were conducted between the years 2013 and 2018 to determine the horizontal and vertical distribution schemes in the epipelagic and mesopelagic copepod community structure of the Caribbean Oceanic ecoregion (CAO) and the oceanographic variables that regulate it. Four indicator species are suggested for the North Equatorial Current and the Caribbean Surface Water (CSW) mass (Clausocalanus furcatus, Oncaea venusta, Temora stylifera and T. turbinate) and two indicator species for deep-water masses such as the Western North Atlantic Central Water (NACW) and the Antarctic Intermediate Water (AAIW) (Mormonilla phasma and Conaea rapax). The copepod assemblage responds to local oceanographic patterns that are regulated (24%) by the variability of dissolved oxygen and temperature in the water column. The horizontal structure of the copepod assemblage in offshore waters presented a spatial sectorization. Three zones were differentiated: (1) oceanic Colombian zone; (2) influence of the Magdalena River zone; and (3) offshore north-east zone. Water mass mixing processes and migration mechanisms favour the homogeneity of the vertical assemblage of copepods in the CAO ecoregion. This study provides relevant information on the structure and density of copepod species, providing key information to describe the ecological processes and the different responses to the oceanographic factors that modulate them.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acha, E, Piola, A, Iribarne, O and Mianzan, E (2015) Ecological Processes at Marine Fronts: Oases in the Ocean, 1st Edn. Cham: Springer.CrossRefGoogle Scholar
Akaike, H (1974) A new look at statistical model identification. IEEE Transactions on Automatic Control 19, 716723.CrossRefGoogle Scholar
Alldredge, A, Robison, B, Fleminger, A, Torres, J, King, J and Hamner, W (1984) Direct sampling and in situ observation of a persistent copepod aggregation in the mesopelagic zone of the Santa Barbara Basin. Marine Biology 8, 7581.CrossRefGoogle Scholar
Ambler, J and Miller, C (1987) Vertical-partitioning by copepodites and adults of subtropical oceanic copepods. Marine Biology 94, 561577.CrossRefGoogle Scholar
Andersen, V, Devey, C, Gubanova, A, Picheral, M, Melnikov, V, Tsarin, S and Prieur, L (2004) Vertical distributions of zooplankton across the Almeria-Oran frontal zone (Mediterranean Sea). Journal of Plankton Research 26, 275293.CrossRefGoogle Scholar
Andrade, C (2015) Oceanografía dinámica de la Cuenca Colombia. Alpha Editores.Google Scholar
Andrade, C and Barton, E (2000) Eddy development and motion in the Caribbean Sea. Journal of Geophysical Research – Part C – Oceans 105, 2619126201.CrossRefGoogle Scholar
Andrade, C and Barton, B (2005) The Guajira upwelling system. Continental Shelf Research 25, 10031022.CrossRefGoogle Scholar
Andrade, I, Hormazábal, S and Combes, V (2014) Intrathermocline eddies at the Juan Fernández Archipelago, southeastern Pacific Ocean. Latin American Journal of Aquatic Research 4, 888906.CrossRefGoogle Scholar
Aristegui, J, Tett, P, Hernández-Guerra, A, Basterretxea, G, Montero, M, Wild, K, Sangrà, P, Hernández-León, S, Canton, M, García-Braun, J, Pacheco, M and Barton, E (1997) The influence of island-generated eddies on chlorophyll distribution: a study of mesoscale variation around Gran Canaria. Deep-Sea Research Part I: Oceanographic Research Papers 44, 7196.CrossRefGoogle Scholar
Ávila de Tabares, E (1971) Zooplancton de la Alta y Media Guajira. División de Pesca del INDERENA 12, 111.Google Scholar
Banse, K (1964) On the vertical distribution of zooplankton in the sea. Progress in Oceanography 2, 53125.CrossRefGoogle Scholar
Bastidas-Salamanca, M and Ricaurte-Villota, C (2017) Regionalización oceanográfica, una visión dinámica del Caribe. Santa Marta, Colombia: Instituto de Investigaciones Marinas y Costeras José Benito Vives De Andréis (INVEMAR). Serie de Publicaciones Especiales de INVEMAR # 14, 180 pp.Google Scholar
Bastidas-Salamanca, M, Ricaurte-Villota, C, Santamaría-del-Angel, E, Ordoñez-Zúñiga, A, Murcia-Riaño, M and Romero-Rodríguez, D (2017) Regionalización dinámica del Caribe. In Bastidas-Salamanca, M and Ricaurte-Villota, C (eds), Regionalización oceanográfica, una visión dinámica del Caribe. Santa Marta, Colombia: Instituto de Investigaciones Marinas y Costeras José Benito Vives De Andréis (INVEMAR), pp. 1432.Google Scholar
Becker, E (2014) Comunidade Planctônica, Especialmente Copépodes, Da Plataforma Continental De Santa Catarina (26–29°S): Associação Com Processos Oceanográficos E Estrutura De Tamanho De Fitoplâncton. Journal of Chemical Information and Modeling 53, 16891699.Google Scholar
Becker, E, Eiras Garcia, C and Santarosa, A (2018) Mesozooplankton distribution, especially copepods, according to water masses dynamics in the upper layer of the Southwestern Atlantic shelf (26°S to 29°S). Continental Shelf Research 166, 1021.CrossRefGoogle Scholar
Bernal, G, Poveda, G, Roldán, P and Andrade, C (2006) Patrones de variabilidad de las temperaturas superficiales del mar en la costa Caribe colombiana. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 30, 195208.Google Scholar
Bernal, A, Werding, B and Zea, S (2004) Variación espacial y temporal de biomasa zooplanctónica en el sector nerítico del mar Caribe colombiano. In Campos, NH and Acero, A (eds), Contribuciones en ciencias del mar en Colombia. Bogotá: Red de estudios del Mundo Marino – REMAR, Universidad Nacional de Colombia, pp. 187196.Google Scholar
Bernal, A and Zea, S (1993) Variaciones nictemerales en la comunidad de zooplancton de la Bahía de Santa Marta, mar Caribe colombiano. Boletín de Investigaciones Marinas y Costeras 22, 520.Google Scholar
Bernal, A and Zea, S (2000) Estructura taxonómica y trófica de la comunidad de zooplancton bajo un régimen alternante entre descarga continental y afloramiento costero en Santa Marta, Caribe colombiano. Boletín de Investigaciones Marinas y Costeras 29, 326.Google Scholar
Björnberg, T (1963) On the marine free-living copepods off Brazil. Boletín del Instituto Oceanográfico de Venezuela 13, 3142.CrossRefGoogle Scholar
Björnberg, T (1981) Copepoda. In Boltovskoy, D (ed.), Atlas del Zooplancton del Atlántico Sudoccidental y métodos de trabajo con el zooplancton marino. Mar del Plata, Argentina: INIDEP, pp. 587679.Google Scholar
Boltovskoy, D (1999) South Atlantic Zooplankton. Leiden: Backhuys Publishers.Google Scholar
Boxshall, G and Hasley, S (2004) An Introduction to Copepod Diversity. London: The Ray Society.Google Scholar
Boyd, D, Smith, S and Cowles, T (1980) Grazing patterns of copepods in the upwelling systems off Peru. Limnology and Oceanography 2, 583596.CrossRefGoogle Scholar
Bradford-Grieve, JM, Markhaseva, EL, Rocha, C and Abiahy, B (1999) Copepoda. In Boltovskoy, D (ed.), South Atlantic Zooplankton. Leiden, The Netherlands: Backhuys Publishers, pp. 8691098.Google Scholar
Bray, J and Curtis, J (1957) An ordination of the upland forest communities of Southern Wisconsin. Ecological Monograph 27, 325349.CrossRefGoogle Scholar
Breitburg, D, Levin, L, Oschlies, A, Grégoire, M, Chavez, FP, Conley, DJ, Garçon, V, Gilbert, D, Gutiérrez, D, Isensee, K, Jacinto, G, Limburg, K, Montes, I, Naqvi, SW, Pitcher, G, Rabalais, N, Roman, M, Rose, K, Seibel, B, Yasuhara, M and Zhang, J (2018) Declining oxygen in the global ocean and coastal waters. Science 359, 111.CrossRefGoogle ScholarPubMed
Campos, N and Plata, J (1990) Crustáceos epiplanctónicos de la región de Santa Marta, Caribe Colombiano. In Corporación autónoma regional del Cauca (ed.), Memorias VII Seminario Nacional de Ciencias y Tecnologías del Mar. Cali, Colombia: Comisión Colombiana de oceanografía, pp. 255264.Google Scholar
Centurioni, L and Niiler, P (2003) On the surface currents of the Caribbean Sea. Geophysical Research Letters 30, 1279.CrossRefGoogle Scholar
Childress, J (1975) The respiratory rates of midwater crustaceans as a function of depth of occurrence and relation to the oxygen minimum layer off Southern California. Comparative Biochemistry and Physiology 50, 787799.CrossRefGoogle Scholar
Cifuentes, J, Torres-García, P and Frías M, (2000) El océano y sus recursos: Plancton, 2nd Edn. México: Fondo de Cultura Económica.Google Scholar
Clarke, KR and Gorley, RN (2015) PRIMER (Plymouth Routines in Multivariate Ecological Research) v7: User Manual/Tutorial. Plymouth: Plymouth Marine Laboratory.Google Scholar
Clarke, KR and Warwick, RM (1998) A taxonomic distinctness index and its statistical properties. Journal of Applied Ecology 35, 523531.CrossRefGoogle Scholar
Clarke, KR and Warwick, RM (1999) The taxonomic distinctness measure of biodiversity: weighting of step lengths between hierarchical levels. Marine Ecology Progress Series 184, 2129.CrossRefGoogle Scholar
Clarke, KR and Warwick, RM (2001) Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd Edn. Plymouth: Plymouth Marine Laboratory.Google Scholar
Correa-Ramírez, M, Rodríguez-Santana, Á, Ricaurte-Villota, C and Paramo, J (2020) The southern Caribbean upwelling system off Colombia: water masses and mixing processes. Deep Sea Research Part I: Oceanographic Research Papers 155, 116.CrossRefGoogle Scholar
Cummings, J (1984) Habitat dimensions of calanoid copepods in the western Gulf of Mexico. Journal of Marine Research 41, 163188.CrossRefGoogle Scholar
Currie, W, Claereboudt, M and Roff, J (1998) Gaps and patches in the ocean: a one-dimensional analysis of planktonic distributions. Marine Ecology Progress Series 171, 1521.CrossRefGoogle Scholar
de Boyer Montégut, C, Madec, G, Fischer, AS, Lazar, A and Iudicone, D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. Journal of Geophysical Research 109, C12003.CrossRefGoogle Scholar
DeMaster, D, Smith, W, Nelson, D and Allers, J (1996) Biogeochemical processes in Amazon shelf waters: chemical distributions and uptake rates of silicon, carbon and nitrogen. Continental Shelf Research 16, 617643.CrossRefGoogle Scholar
Díaz, J and Acero, A (2003) Marine biodiversity in Colombia: achievements, status of knowledge, and challenges. Gayana 67, 261274.Google Scholar
Dias, C, Araujo, A, Paranhos, R and Bonecker, S (2010) Vertical copepod assemblages (0–2300 m) off southern Brazil. Zoological Studies 49, 230242.Google Scholar
Emery, W (2001) Water types and water masses. In Holton, J, Curry, J and Pyle, A (eds), Encyclopaedia of Atmospheric Sciences, 2nd Edn. London: Elsevier, pp. 15561567.Google Scholar
Emery, W and Meincke, J (1986) Global water masses: summary and review. Oceanologica Acta 9, 383391.Google Scholar
Falkowski, P, Ziemann, D, Kolber, Z and Bienfang, P (1991) Role of eddy pumping in enhancing primary production in the ocean. Nature 352, 5558.CrossRefGoogle Scholar
Farstey, V, Lazar, B and Genin, A (2002) Expansion and homogeneity of the vertical distribution of zooplankton in a very deep mixed layer. Marine Ecology Progress Series 238, 91100.CrossRefGoogle Scholar
Folt, C and Burns, C (1999) Biological drivers of zooplankton patchiness. Trends in Ecology and Evolution 14, 300305.Google ScholarPubMed
Fragopoulu, N, Siokou-Frangou, I, Christou, E and Mazzocchi, M (2001) Patterns of vertical distribution of Pseudocalanidae and Paracalanidae (Copepoda) in pelagic waters (0 to 300 m) of the Eastern Mediterranean Sea. Crustaceana 74, 4968.Google Scholar
Franco-Herrera, A, Castro, L and Tigreros, P (2006) Plankton dynamics in the South-Central Caribbean Sea: strong seasonal changes in a Coastal Tropical System. Caribbean Journal of Science 42, 2438.Google Scholar
Frost, B and Fleminger, A (1968) A revision of the genus Clausocalanus (Copepoda Calanoida) with remarks on distributional patterns in diagnostic characters. Bulletin of the Scripps Institution of Oceanography 12, 191.Google Scholar
Gajbhiye, S (2002) Zooplankton study methods, importance and significant observations. In Proceedings of the National Seminar on Creeks, Estuaries and Mangroves – Pollution and Conservation, pp. 2127.Google Scholar
Gasca, R, Segura, L and Suárez-Morales, E (1996) El zooplancton marino. In Gasca, R and Suárez, E (eds), Introducción al estudio del zooplancton marino. México: ECOSUR-CONACYT, pp. 136.Google Scholar
Gaviria, S and Aranguren, N (2003) Guía de laboratorio para identificación de cladóceros (Anopoda y Ctenopoda) y copépodos (Calanoida y Cyclopoida). In Gaviria, S and Aranguren, N (eds) Técnicas de determinación taxonómica de cladóceros y copépodos limneticos de Colombia, Universidad Pedagógica y Tecnológica de Colombia. Tunja: Escuela de Biología, pp. 122.Google Scholar
Giraldo, L (1994) Análisis de masas de agua y control de calidad de la información oceanográfica. Boletín Científico CIOH 15, 1738.CrossRefGoogle Scholar
Gordon, A (1967) Circulation of the Caribbean Sea. Journal of Geophysical Research 72, 62076223.CrossRefGoogle Scholar
Gutiérrez-Salcedo, J (2011) Estructura vertical del zooplancton oceánico del mar Caribe colombiano (MS Thesis). Universidad Nacional de Colombia, Bogotá, Colombia.Google Scholar
Hampton, S, Gray, D, Izmest, L, Moore, M and Ozersky, T (2014) The rise and fall of plankton: long-term changes in the vertical distribution of algae and grazers in Lake Baikal, Siberia. PLoS ONE 9, 110.CrossRefGoogle ScholarPubMed
He, Q (1999) A Review of Clustering Algorithms as Applied in IR. Champaign, IL: Graduate School of Library and Information Science, University of Illinois at Urbana-Champaign.Google Scholar
Hernández-Guerra, A and Joyce, T (2000) Water masses and circulation in the surface layers of the Caribbean at 66°W. Geophysical Research Letters 27, 34973500.CrossRefGoogle Scholar
Hidalgo, P, Escribano, R, Fuentes, M, Jorquera, E and Vergara, O (2012) How coastal upwelling influences spatial patterns of size-structured diversity of copepods off central-southern Chile (summer 2009). Progress in Oceanography 92–95, 134145.CrossRefGoogle Scholar
Hopcroft, R, Roff, J, Webber, M and Witt, J (1998) Zooplankton growth rates: the influence of size and resources in tropical marine copepodites. Marine Biology 132, 6777.CrossRefGoogle Scholar
Huskin, I, Anadon, R, Medina, G, Head, R and Harris, R (2001) Mesozooplankton distribution and copepod grazing in the Subtropical Atlantic near the Azores: influence of mesoscale structures. Journal of Plankton Research 23, 671691.CrossRefGoogle Scholar
Huys, R and Boxshall, G (1991) Copepod Evolution. London: The Ray Society.Google Scholar
IOC, SCOR and IAPSO (2010) The International Thermodynamic Equation of Seawater – 2010: Calculation and Use of Thermodynamic Properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English).Google Scholar
INVEMAR (2000) Programa Nacional de Investigación en Biodiversidad Marina y Costera PNIBM. Santa Marta: INVEMAR, FONADE, MMA, 80 pp.Google Scholar
Jullion, L, Heywood, K, Neira-Garabato, A and Stevens, D (2010) Circulation and water mass modification in the Brazil–Malvinas confluence. Journal of Physical Oceanography 40, 845864.CrossRefGoogle Scholar
Karstensen, J (2020) OMP (Optimum Multiparameter) Analysis. Available at https://www.mathworks.com/matlabcentral/fileexchange/1334-omp-analysis, MATLAB Central File Exchange (Accessed 1 February 2020).Google Scholar
Karstensen, J and Tomczak M, (1999) OMP (Optimum Multiparameter) Analysis Software Package. Available at https://omp.geomar.de (Accessed 1 February, 2020).Google Scholar
Longhurst, A (1967 a) Vertical distribution of zooplankton in relation to the eastern Pacific oxygen minimum. Deep-Sea Research 14, 5163.Google Scholar
Longhurst, A (1967 b) Diversity and trophic structure of zooplankton communities in the California current. Deep-Sea Research 14, 393408.Google Scholar
Longhurst, A (1985 a) Relationship between diversity and the vertical structure of the upper ocean. Deep-Sea Research 32, 15351570.CrossRefGoogle Scholar
Longhurst, A (1985 b) The structure and evolution of plankton communities. Progress in Oceanography 15, 135.CrossRefGoogle Scholar
Longhurst, A (2007) Ecological Geography of the Sea, 2nd Edn. Amsterdam: Elsevier.CrossRefGoogle Scholar
López, W and Mesa, N (1984) Distribución y abundancia del zooneuston en el Caribe colombiano, crucero Océano V, áreas II y III. IV Seminario Nacional de Ciencias del Mar, Centro de Investigaciones Oceanográficas e Hidrográficas, Comisión Colombiana de Oceanografía, CE-BM-11, 15 pp.Google Scholar
Lozano-Duque, Y, Medellín-Mora, J and Navas, GR (2010) Contexto climatológico y oceanográfico del mar Caribe colombiano. In Navas, GR, Segura-Quintero, C, Garrido-Linares, M, Benavides-Serrato, M and Alonso, D (eds), Biodiversidad del Margen Continental del Caribe Colombiano. Serie de publicaciones especiales # 20. Santa Marta: Invemar, pp. 6284.Google Scholar
Ludwig, J and Reynolds, J (1988) Statistical Ecology: A Primer on Methods and Computing. New York, NY: John Wiley and Sons.Google Scholar
Mann, K and Lazier, J (1995) Dynamics of Marine Ecosystem. Biological-Physical Interactions in the Oceans. Boston, MA: Blackwell Scientific Publications.Google Scholar
McArdle, B and Anderson, M (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82, 290297.CrossRefGoogle Scholar
McGillicuddy, D, Anderson, L, Bates, R, Bibby, T, Buesseler, K, Carlson, C, Davis, C, Ewart Falkowski, P, Goldthwait, S, Hansell, D, Jenkins, L, Johnson, R, Kosnyrev, V, Ledwell, J, Li, Q, Siegel, D and Steinberg, D (2007) Eddy/wind interactions stimulate extraordinary mid-ocean plankton bloom. Science 316, 10211026.CrossRefGoogle Scholar
Medellín-Mora, J, Escribano, R, Corredor-Acosta, A, Hidalgo, P and Schneider, W (2021) Uncovering the composition and diversity of pelagic copepods in the oligotrophic blue water of the South Pacific subtropical gyre. Frontiers in Marine Science 8, 625842.CrossRefGoogle Scholar
Medellín-Mora, J, Escribano, R, Schneider, W, Correa-Ramírez, M and Campos, N (2018) Spatial variability of zooplankton community structure in Colombian Caribbean waters during two seasons. Revista de Biologia Tropical 66, 688708.Google Scholar
Medellín-Mora, J and Martínez-Ramírez, O (2010) Distribución del mesozooplancton en aguas oceánicas del mar Caribe colombiano durante mayo y junio de 2008. In Navas, GR Segura-Quintero, C, Garrido-Linares, M, Benavides-Serrato, M and Alonso, D (eds) Biodiversidad del margen continental del Caribe colombiano. Serie de publicaciones especiales # 20. Santa Marta: INVEMAR, pp. 121149.Google Scholar
Menezes, B, Macedo-Soares, L and Santarosa, A (2019) Changes in the plankton community according to oceanographic variability in a shallow subtropical shelf: SW Atlantic. Hydrobiologia 5, 114.Google Scholar
Michele, H and Foyo, M (1976) Studies of Caribbean Zooplankton. Rosenstiel School of Marine and Atmospheric Science. University of Miami. Miami, FL, USA.Google Scholar
Montoya-Sánchez, A, Devis-Morales, A, Bernal, G and Poveda, G (2018) Seasonal and interannual variability of the mixed layer heat budget in the Caribbean Sea. Journal of Marine Systems 187, 111127.CrossRefGoogle Scholar
Morales, C, Loreto-Torreblanca, M, Hormazabal, S, Correa-Ramírez, M, Nuñez, S and Hidalgo, P (2010) Mesoscale structure of copepod assemblages in the coastal transition zone and oceanic waters off central-southern Chile. Progress in Oceanography 84, 158173.CrossRefGoogle Scholar
Oliveira Dias, C, Valente de Araujo, A, Paranhos, R and Costa Bonecker, S (2010) Vertical copepod assemblages (0–2300 m) off Southern Brazil. Zoological Studies 49, 230242.Google Scholar
Ortiz, J (2007) Huracanes y tormentas tropicales en el mar Caribe colombiano desde 1900. Boletín Científico CIOH 25, 5460.CrossRefGoogle Scholar
Paramo, J, Correa, M and Núñez, S (2011) Evidencias de desacople físico-biológico en el sistema de surgencia en La Guajira, Caribe colombiano. Revista de Biología Marina y Oceanografía 46, 421430.CrossRefGoogle Scholar
Pinel-Alloul, B (1995) Spatial heterogeneity as a multiscale characteristic of zooplankton community. Hydrobiologia 300, 1742.CrossRefGoogle Scholar
Razouls, C, De Bovée, F, Kouwenberg, J and Desreumaux, N (2005–2021) Diversity and geographic distribution of marine planktonic copepods. http://copepodes.obs-banyuls.fr/en (Accessed 31 January 2021).Google Scholar
Restrepo, J, Zapata, P, Díaz, J, Garzón-Ferreira, J and García, C (2006) Fluvial fluxes into the Caribbean Sea and their impact on coastal ecosystems: the Magdalena River, Colombia. Global and Planetary Change 50, 3349.CrossRefGoogle Scholar
Rivera-Monroy, V, Twilley, R, Bone, D, Childers, D, Coronado-Molinam, C, Feller, I, Herrera-Silveira, J, Jaffe, R, Mancera, E, Rejmankova, E, Salisbury, J and Weil, E (2004) A conceptual framework to develop long-term ecological research and management objectives in the wider Caribbean region. BioScience 54, 843856.CrossRefGoogle Scholar
Ruiz-Ochoa, MA (2011) Variabilidad de la Cuenca Colombia (mar Caribe) asociada con El Niño-Oscilación del Sur, vientos Alisios y procesos locales Variabilidad de la Cuenca Colombia (mar Caribe) asociada con El Niño-Oscilación del Sur, vientos Alisios y procesos locales. PhD Thesis. Universidad Nacional de Colombia, Colombia.Google Scholar
Salisbury, J, Campbell, J, Meeker, L and Vörösmarty, C (2001) Ocean color and river data reveal fluvial influence in coastal waters. Eos, Transactions American Geophysical Union 82, 221227.Google Scholar
Scotto di Carlo, B, Ianora, A, Fresi, E and Hure, J (1984) Vertical zonation patterns for Mediterranean copepods from the surface to 3000 m at a fixed station in the Tyrrhenian Sea. Journal of Plankton Research 6, 10311056.CrossRefGoogle Scholar
Steele, J (1976) Patchiness. In Cushing, E and Walsh, J (eds), The Ecology of the Seas. Philadelphia, PA: W.B. Saunders Company, pp. 98115.Google Scholar
Suárez-Morales, E and Gasca, R (2000) Epipelagic copepod assemblages in the Western Caribbean Sea (1991). Crustaceana 73, 12471257.Google Scholar
Taylor, LR (1961) Aggregation, variance, and the mean. Nature 189, 732735.CrossRefGoogle Scholar
Torregroza-Espinosa, A, Restrepo, J, Escobar, J, Brenner, M and Newton, A (2020) Nutrient inputs and net ecosystem productivity in the mouth of the Magdalena River, Colombia. Estuarine, Coastal and Shelf Science 243, 115.CrossRefGoogle Scholar
Urbano-Rosas, J (1993) Masas de agua en el Caribe colombiano. Boletín Científico del CIOH 14, 330.CrossRefGoogle Scholar
Velandia-Bohórquez, A, Ricaurte-Villota, C, Bastidas-Salamanca, M, Murcia-Riaño, M, Romero-Rodríguez, D and Ordoñez-Zúñiga, A (2017) Región 4: Caribe Oceánico. In Bastidas-Salamanca, M and Ricaurte-Villota, C (eds), Regionalización oceanográfica, una visión dinámica del Caribe. Santa Marta, Colombia: INVEMAR, pp. 8294.Google Scholar
Vidal, V, Vidal, F and Hernández, O (1990) Atlas Oceanográfico del Golfo de México, vol III. Cuernavaca, Morelos, México: Instituto de Investigaciones Eléctricas, Grupo de Estudios Oceanográficos.Google Scholar
Vidal, V, Vidal, F, Hernández, A, Meza, E and Zambrano, L (1994) Winter water mass distributions in the western Gulf of Mexico affected by a colliding anticyclonic ring. Journal of Oceanography 50, 55.CrossRefGoogle Scholar
Vinogradov, M (1968) Vertical distribution of the oceanic zooplankton. Akad. Nauk. SSSR Inst. Oceanol. Moscow (Transl. by Israel Program for Scientific Transl. Ltd). Jerusalem: Keter Press, p. 338.Google Scholar
Williams, R (1985) Vertical distribution of Calanus finmarchicus and C. helgolandicus in relation to the development of the seasonal thermocline in the Celtic Sea. Marine Biology 86, 145149.CrossRefGoogle Scholar
Wishner, K, Gelfman, C, Gowing, M, Outram, D, Rapien, M and Williams, R (2008) Vertical zonation and distributions of calanoid copepods through the lower oxycline of the Arabian Sea oxygen minimum zone. Progress in Oceanography 78, 163191.CrossRefGoogle Scholar
Wishner, K, Gowing, M and Gelfman, C (1998) Mesozooplankton biomass in the upper 1000 m in the Arabian Sea: overall seasonal and geographic patterns, and relationship to oxygen gradients. Deep-Sea Research Part II: Topical Studies in Oceanography 45, 24052432.CrossRefGoogle Scholar
Worthington, E (1931) Vertical movements of fresh-water macroplankton. Zoological Laboratory 25, 394436.Google Scholar
Supplementary material: File

Dorado-Roncancio et al. supplementary material

Dorado-Roncancio et al. supplementary material

Download Dorado-Roncancio et al. supplementary material(File)
File 6.2 MB