Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-23T21:05:54.852Z Has data issue: false hasContentIssue false

Comparative evaluation of certain organic and inorganic sources of nitrogen for phototrophic growth of marine microalgae

Published online by Cambridge University Press:  11 May 2009

N. J. Antia
Affiliation:
Environment Canada, Fisheries and Marine Service, Vancouver Laboratory, 6640 N.W. Marine Drive, Vancouver, B.C. V6T 1X2, Canada.
B. R. Berland
Affiliation:
Station Marine d'Endoume, Rue de la Batterie-des-Lions, 13007 Marseille, France
D. J. Bonin
Affiliation:
Station Marine d'Endoume, Rue de la Batterie-des-Lions, 13007 Marseille, France
S. Y. Maestrini
Affiliation:
Station Marine d'Endoume, Rue de la Batterie-des-Lions, 13007 Marseille, France

Extract

Twenty-six species of marine planktonic algae, belonging to 8 taxonomic divisions, were tested tinder axenic-culture conditions for their capacity to grow, under cool-white light, on nitrate, nitrite, ammonium, urea, glycine, D-glucosamine or hypoxanthine as sole nitrogen source. The culture medium was composed of Mediterranean oligotrophic sea water enriched with phosphate, silicate, trace-metal ions and vitamins, and buffered at pH 7.5–80. Each nitrogen compound was tested at a fixed concentration of 500 μg-at. N per litre.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammann, E. C. B. & Lynch, V. H., 1964. Purine metabolism by unicellular algae. II. Adenine, hypoxanthine, and xanthine degradation by Chlorella pyrenoidosa. Biochimica biophysica acta, 87, 370–9.Google Scholar
Antia, N. J. & Cheng, J. Y., 1970. The survival of axenic cultures of marine planktonic algae from prolonged exposure to darkness at 20 C. Phycologia, 9, 179–84.Google Scholar
Antia, N. J. & Chorney, V., 1968. Nature of the nitrogen compounds supporting phototrophic growth of the marine cryptomonad Hemiselmis virescens. Journal of Protozoology, 15, 198201.Google Scholar
Antia, N. J. & Kalmakoff, J., 1965. Growth rates and cell yields from axenic mass culture of fourteen species of marine phytoplankters. Fisheries Research Board of Canada, Manuscrìpt Report Series (Oceanographic & Limnological), 203, 124.Google Scholar
Antia, N. J. & Landymore, A. F., 1974. Physiological and ecological significance of the chemical instability of uric acid and related purines in sea water and marine algal culture medium. Journal of Fisheries Research Board of Canada, 31, 1327–35.Google Scholar
Antia, N. J. & Lee, C. Y., 1964. The determination of ‘free’ amino sugars in seawater. Limnology and Oceanography, 9, 261–2.CrossRefGoogle Scholar
Armstrong, F. A. J., Butler, E. I. & Boalch, G. T., 1972. Hydrographic and nutrient chemistry surveys in the western English Channel during 1963 and 1964. Journal of the Marine Biological Association of the United Kingdom, 52, 915–30.CrossRefGoogle Scholar
Bendich, A., 1955. Chemistry of purines and pyrimidines, 81–136. In: The nucleic acids, chemistry and biology, ed. E., Chargaff and Davidson, J. N., vol. 1. New York: Academic Press.Google Scholar
Berland, B. R., Bonin, D. J. & Maestrini, S. Y., 1972 a. Are some bacteria toxic for marine algae? Marine Biology, 12, 189–93.Google Scholar
Berland, B. R., Bonin, D. J., Cornu, A. L., Maestrini, S. Y. & Marino, J.-P., 1972 b. The antibacterial substances of the marine alga Stichochrysis immobilis (Chrysophyta). Journal of Phycology, 8, 383–92.Google Scholar
Birdsey, E. C. & Lynch, V. H., 1962. Utilization of nitrogen compounds by unicellular algae. Science, New York, 137, 763–4.CrossRefGoogle ScholarPubMed
Butler, E. I. & Tibbitts, S., 1972. Chemical survey of the Tamar Estuary. I. Properties of the waters. Journal of the Marine Biological Association of the United Kingdom, 52, 681–99.CrossRefGoogle Scholar
Carpenter, E. J., Remsen, C. C. & Watson, S. W., 1972. Utilization of urea by some marine phytoplankters. Limnology and Oceanography, 17, 265–9.Google Scholar
Clark, M. E., Jackson, G. A. & North, W. J., 1972. Dissolved free amino acids in southern California coastal waters. Limnology and Oceanography, 17, 749–58.Google Scholar
Corner, E. D. S., Head, R. N. & Kilvington, C. C., 1972. On the nutrition and metabolism of zooplankton. VIII. The grazing of Biddulphia cells by Calanus helgolandicus. Journal of the Marine Biological Association of the United Kingdom, 52, 847–61.CrossRefGoogle Scholar
Coste, B., 1971. Les sels nutritifs entre la Sicile, la Sardaigne et la Tunisie. Cahiers océanographiques, 23 (1), 4983.Google Scholar
Droop, M. R., 1955. Some new supra-littoral protista. Journal of the Marine Biological Association of the United Kingdom, 34, 233–45.Google Scholar
Droop, M. R., 1961. Haematococcus pluvialis and its allies. III. Organic nutrition. Revue algologique, 4, 247–59.Google Scholar
Eppley, R. W. & Renger, E. H., 1974. Nitrogen assimilation of an oceanic diatom in nitrogenlimited continuous culture. Journal of Phycology, 10, 1523.Google Scholar
Eppley, R. W. & Rogers, J. N., 1970. Inorganic nitrogen assimilation of Ditylum brightwellii, a marine planktonic diatom. Journal of Phycology, 6, 344–51.Google Scholar
Eppley, R. W., Carlucci, A. F., Holm-Hansen, O., Kiefer, D., Mccarthy, J. J., Venrick, E. & Williams, P. M., 1971. Phytoplankton growth and composition in shipboard cultures supplied with nitrate, ammonium, or urea as the nitrogen source. Limnology and Oceanography, 16, 741–51.Google Scholar
Fraser, D. I., Simpson, S. G. & Dyer, W. J., 1968. Very rapid accumulation of hypoxanthine in the muscle of redfish stored in ice. Journal of Fisheries Research Board of Canada, 25, 817–21.Google Scholar
Fries, L., 1963. On the cultivation of axenic red algae. Physiologia plantarum, 16, 695708.Google Scholar
Fries, L. & Pettersson, H., 1968. On the physiology of the red alga Asterocytis ramosa in axenic culture. British Phycological Bulletin, 3, 417–22.CrossRefGoogle Scholar
Gibor, A., 1956. The culture of brine algae. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 11, 223–9.Google Scholar
Guillard, R. R. L., 1963. Organic sources of nitrogen for marine centric diatoms, 93–104. In: Symposium on marine microbiology, ed. Oppenheimer, C. H., 769 pp. Springfield, Illinois: Thomas.Google Scholar
Gundersen, K., Mountain, C. W., Taylor, D., Ohye, R. & Shen, J., 1972. Some chemical and microbiological observations in the Pacific Ocean off the Hawaiian Islands. Limnology and Oceanography, 17, 524–31.Google Scholar
Hay, W. W., Mohler, H. P., Roth, P. H., Schmidt, R. R. & Boudreaux, J. E., 1967. Calcareous nannoplankton zonation of the Cenozoic of the Gulf Coast and Caribbean-Antillean area, and transoceanic correlation. Transactions of Gulf-Coast Association of geological Societies, 17, 428–80.Google Scholar
Hayward, J., 1965. Studies on the growth of Phaeodactylum tricornutum (Bohlin). I. The effect of certain organic nitrogenous substances on growth. Physiologia plantarum, 18, 201–7.Google Scholar
Hellebust, J. A. & Guillard, R. R. L., 1967. Uptake specificity for organic substrates by the marine diatom Melosira nummuloides. Journal of Phycology, 3, 132–6.CrossRefGoogle ScholarPubMed
Jawed, M., 1973. Ammonia excretion by zooplankton and its significance to primary productivity during summer. Marine Biology, 23, 115–20.Google Scholar
Johnston, C. E. & Eales, J. G., 1968. Influence of temperature and photo-period on guanine and hypoxanthine levels in skin and scales of Atlantic salmon (Salmo salaf) during parr-smolt transformation. Journal of Fisheries Research Board of Canada, 25, 1901–9.CrossRefGoogle Scholar
Lee, A. S. K., Vanstone, W. E., Markert, J. R. & Antia, N. J., 1969. UV-absorbing and UV-fluorescing substances in the belly skin of fry of coho salmon (Oncorhynchus kisutch). Journal of Fisheries Research Board of Canada, 26, 1185–98.CrossRefGoogle Scholar
Lui, N. S. T. & Roels, O. A., 1970. Nitrogen metabolism of aquatic organisms. I. The assimilation and formation of urea in Ochromonas malhamensis. Archives of Biochemistry and Biophysics, 139, 269–77.Google Scholar
Lui, N. S. T. & Roels, O. A., 1972. Nitrogen metabolism of aquatic organisms. II. The assimilation of nitrate, nitrite, and ammonia by Biddulphia aurita. Journal of Phycology, 8, 259–64.Google Scholar
Maeda, M. & Taga, N., 1974. Occurrence and distribution of deoxyribonucleic acid-hydrolyzing bacteria in seawater. Journal of Experimental Marine Biology and Ecology, 14, 157–69.Google Scholar
Martin, J. H., 1968. Phytoplankton-zooplankton relationships in Narragansett Bay. III. Seasonal changes in zooplankton excretion rates in relation to phytoplankton abundance. Limnology and Oceanography, 13, 6371.CrossRefGoogle Scholar
Mccarthy, J. J., 1970. A urease method for urea in sea water. Limnology and Oceanography, 15, 309–13.CrossRefGoogle Scholar
Mccarthy, J. J., 1972 a. The uptake of urea by natural populations of marine phytoplankton. Limnology and Oceanography, 17, 738–48.CrossRefGoogle Scholar
Mccarthy, J. J., 1972 b. The uptake of urea by marine phytoplankton. Journal of Phycology, 8, 216–22.Google Scholar
Mclachlan, J. & Craigie, J. S., 1966. Chitan fibres in Cyclotella cryptica and growth of C. cryptica and Thalassiosira fluviatilis. 511–17. In: Some contemporary studies in marine science, ed. H., Barnes, 716 pp. London: Allen & Unwin.Google Scholar
Menzel, D. W. & Ryther, J. H., 1960. The annual cycle of primary production in the Sargasso Sea off Bermuda. Deep-Sea Research. 6, 351–67.Google Scholar
North, B. B. & Stephens, G. C., 1967. Uptake and assimilation of amino acids by Platymonas. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 133, 391400.Google Scholar
North, B. B. & Stephens, G. C., 1972. Amino acid transport in Nitzschia ovalis Arnott. Journal of Phycology, 8, 64–8.CrossRefGoogle Scholar
Pintner, I. J. & Provasoli, L., 1963. Nutritional characteristics of some chrysomonads, 114–21. In: Symposium on marine microbiology, ed. Oppenheimer, C. H., 769 pp. Springfield, Illinois: Thomas.Google Scholar
Provasoli, L. & Mclaughlin, J. J. A., 1963. Limited heterotrophy of some photosynthetic dinoflagellates, 105–13. In: Symposium on marine microbiology, ed. Oppenheimer, C. H., 769 pp. Springfield, Illinois: Thomas.Google Scholar
Reimann, B. E. F., Lewin, J. M. C. & Guillard, R. R. L., 1963. Cyclotella cryptica, a new brackish-water diatom species. Phycologia, 3, 7584.Google Scholar
Remsen, C. C., 1971. The distribution of urea in coastal and oceanic waters. Limnology and Oceanography, 16, 732–40.CrossRefGoogle Scholar
Schell, D. M., 1974. Uptake and regeneration of free amino acids in marine waters of Southeast Alaska. Limnology and Oceanography, 19, 260–70.CrossRefGoogle Scholar
Stanier, R. Y., Kunisawa, R., Mandel, M. & Cohen-Bazire, G., 1971. Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriological Reviews, 35, 171205.Google Scholar
Smayda, T. J., 1973. The growth of Skeletonema costatum during a winter-spring bloom in Narragansett Bay, Rhode Island. Norwegian Journal of Botany, 20, 219–47.Google Scholar
Stephens, G. C. & North, B. B., 1971. Extrusion of carbon accompanying uptake of amino acids by marine phytoplankters. Limnology and Oceanography, 16, 752–7.Google Scholar
Thomas, W. H., 1966. Surface nitrogenous nutrients and phytoplankton in the northeastern tropical Pacific Ocean. Limnology and Oceanography, 11, 393400.CrossRefGoogle Scholar
Thomas, W. H., 1970. Effect of ammonium and nitrate concentration on chlorophyll increases in natural tropical Pacific phytoplankton populations. Limnology and Oceanography, 15, 386–94.CrossRefGoogle Scholar
Turner, M. F., 1970. A note on the nutrition of Rhodella. British Phycological Journal, 5, 1518.CrossRefGoogle Scholar
Van Baalen, C., 1962. Studies on marine blue-green algae. Botanica marina, 4, 129–39.Google Scholar
Van Baalen, C. & Marler, J. E., 1963. Characteristics of marine blue-green algae with uric acid as nitrogen source. Journal of General Microbiology, 32, 457–63.Google Scholar
Webb, K. L. & Johannes, R. E., 1967. Studies of the release of dissolved free amino acids by marine zooplankton. Limnology and Oceanography, 12, 376–82.Google Scholar
Webb, K. L. & Johannes, R. E., 1969. Do marine crustaceans release dissolved amino acids? Comparative Biochemistry and Physiology, 29, 875–8.Google Scholar
Webb, K. L., Johannes, R. E. & Coward, S. J., 1971. Effects of salinity and starvation on release of dissolved free amino acids by Dugesia dorotocephala and Bdelloura Candida (Platyhelminthes, Turbellaria). Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 141, 364–71.CrossRefGoogle Scholar
Wheeler, P. A., North, B. B. & Stephens, G. C., 1974. Amino acid uptake by marine phytoplankters. Limnology and Oceanography, 19, 249–59.Google Scholar
Whitledge, T. E. & Dugdale, R. C., 1972. Creatine in sea water. Limnology and Oceanography, 17, 309–14.Google Scholar
Winkenbach, F., Grant, B. R. & Bidwell, R. G. S., 1972. The effects of nitrate, nitrite, and ammonia on photosynthetic carbon metabolism of Acetabularia chloroplast preparations compared with spinach chloroplasts and whole cells of Acetabularia and Dunaliella. Canadian Journal of Botany, 50, 2545–51.Google Scholar