Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T21:07:43.728Z Has data issue: false hasContentIssue false

The Comparative Anatomy of leg Proprioceptors in some Decapod Crustacea

Published online by Cambridge University Press:  11 May 2009

J. S. Alexandrowicz
Affiliation:
Plymouth Laboratory

Extract

According to the generally adopted view, all the proprioceptors of the leg articulations of decapod Crustacea respond to stretching or relaxation of the organs caused by joint movements or joint position. This view is based on anatomical and physiological studies made, originally, mostly on crabs. It has been found, however, that in other groups of Crustacea, such as Anomura and Macrura Reptantia, some of these receptor organs are anatomically related to structures on the exoskeleton. This type of receptor organ, examined in Palinurus vulgaris Latreille, Homarus gammarus (L.) and Pagurus bernhardus (L.), is the main subject of the present paper. In the course of this work some observations have been made on other proprioceptors, particularly those in the ischiopodite-meropodite articulation, and these too are reported below. The organs in the coxal region, the special structure of which was the subject of previous investigations (Alexandrowicz & Whitear, 1957; Alexandrowicz, 1958, 1967), are not included.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, C. G. 1969. Structure and properties of mechanoreceptors in the pereiopods of Ligia oceanica. Comp. Biochem. Physiol., Vol. 29, pp. 1197–205.CrossRefGoogle Scholar
Alexandrowicz, J. S. 1932. The innervation of the heart of the Crustacea. I. Decapoda. Q. Jl microsc. Sci., Vol. 75, pp. 181249.Google Scholar
Alexandrowicz, J. S. 1958. Further observations on proprioceptors in Crustacea and a hypothesis about their function. J. mar. biol. Ass. U.K., Vol. 37, pp. 379–96.CrossRefGoogle Scholar
Alexandrowicz, J. S. 1967. Receptor organs in the coxal region of Palinurus vulgaris. J. mar. biol. Ass. U.K., Vol. 47, pp. 415–32.Google Scholar
Alexandrowicz, J. S. & Whitear, Mary 1957. Receptor elements in the coxal region of decapod Crustacea. J. mar. biol. Ass. U.K., Vol. 36, pp. 603–28.CrossRefGoogle Scholar
Barth, G. 1934. Untersuchungen über Myochordotonalorgane bei dekapoden Crustaceen. Z. wiss. Zool., Bd 145, pp. 576624.Google Scholar
Burke, W. 1954. An organ for proprioception and vibration sense in Carcinus maenas. J. exp. Biol., Vol. 31, pp. 127–38.CrossRefGoogle Scholar
Bush, B. M. H. 1965. Proprioception by chordotonal organs in the mero-carpopodite and carpopropodite joints of Carcinus maenas. Comp. Biochem. Physiol., Vol. 14, pp. 185–99.CrossRefGoogle ScholarPubMed
Clarac, F. 1968. Proprioceptor anatomy of the ischio-meropodite region in legs of the crab, Carcinus mediterraneus C. Z. vergl. Physiol., Bd. 61, pp. 203–23.Google Scholar
Clarac, F. 1970. Fonctions proprioceptives au niveau de la région basi-ischio-méropodite chez Astacus leptodactylus. Z. vergl. Physiol., Bd. 68, pp. 124.Google Scholar
Clarac, F. & Masson, Claudine 1969. Anatomie comparée des propriocepteurs de la région basiischio-méropodite chez certains Crustacés décapodes. Z. vergl. Physiol., Bd. 65, pp. 242–73.Google Scholar
Clarac, F. & Vedel, J. P. 1971. Étude des relations fonctionelles entre le muscle fléchisseur accessoire et les organes sensoriels chordotonaux et myochordotonaux des appendices locomoteurs de la langouste Palinurus vulgaris. Z. vergl. Physiol., Bd. 72, pp. 386410.CrossRefGoogle Scholar
Clarac, F.Wales, W. & Laverack, M. S. 1971. Stress detection at the autotomy plane in the decapod Crustacea. II. The function of receptors associated with the cuticle of the basiischiopodite. Z. vergl. Physiol., Bd. 73, pp. 383407.CrossRefGoogle Scholar
Cohen, M. J. 1960. A proprioceptive system in the legs of the crab, Cancer magister. Anat. Rec., Vol. 137, p. 346.Google Scholar
Cohen, M. J. 1963a. The crustacean myochordotonal organ as a proprioceptive system. Comp. Biochem. Physiol., Vol. 8, pp. 223–43.CrossRefGoogle Scholar
Cohen, M. J. 1963b. Muscle fibres and efferent nerves in a crustacean receptor muscle. Q. Jl microsc. Sci., Vol. 104, pp. 551–9.Google Scholar
Cohen, M. J. 1965. The dual role of sensory systems: detection and setting central excitability. Cold Spring Harb. Symp. quant. Biol., Vol. 30, pp. 587–99.Google Scholar
Cohen, M. J. & Hess, A. 1967. Fine structural differences in ‘fast’ and ‘slow’ muscle fibres of the crab. Am. J. Anat., Vol. 121, pp. 285304.Google Scholar
Dorai Raj, B. S. 1964. Diversity of crab muscle fibres innervated by a single motor axon. J. cell. comp. Physiol., Vol. 64. pp. 4153.Google Scholar
Dorai Raj, B. S. & Cohen, M. J. 1964. Structural and functional correlations in crab muscle fibres. Naturwissenschaften, Bd. 51, pp. 224–5.Google Scholar
Fahrenbach, W. H. 1967. The fine structure of fast and slow crustacean muscles. J. cell Biol., Vol. 35, pp. 6979.CrossRefGoogle ScholarPubMed
Hansen, H. J. 1925. Studies on Arthropoda, Vol. II. Copenhagen: Gyldendal.Google Scholar
Harms, J. W. 1932. Die Realisation von Genen und die consecutive Adaptation. II. Birgus latro L. als Landkrebs und seine Beziehungen zu den Coenobiten. Z. wiss. Zool., Bd. 140, pp. 167290.Google Scholar
Hartman, H. B. & Boettiger, E. G. 1967. The functional organization of the propus-dactylus organ in Cancer irroratus Say. Comp. Biochem. Physiol., Vol. 22, pp. 651–63.CrossRefGoogle Scholar
Hwang, J. C. C. 1961. The function of a second sensory cell group in the accessory-flexor proprioceptive system of crab limbs. Am. Zool., Vol. 1, p. 453.Google Scholar
Mill, P. J. & Lowe, D. A. 1971. Transduction processes of movement and position sensitive cells in a crustacean limb proprioceptor. Nature, Lond., Vol. 229, pp. 206–7.CrossRefGoogle Scholar
Schmidt, W. 1915. Die Muskulatur von Astacus fluviatilis (Potamobius astacus L.) Z. wiss. Zool., Bd 113, pp. 165251.Google Scholar
Tonner, F. 1933. Ein Beitrag zur Anatomie und Physiologie des peripheren Nervensystems von Astacus fluviatilis. Zool. Jb. {Zool.), Bd. 53, pp. 101–52.Google Scholar
Wales, W.Clarac, F.Dando, M. R. & Laverack, M. S. 1970. Innervation of the receptors present at the various joints of the pereiopods and third maxilliped of Homarus gammarus (L.) and other macruran decapods (Crustacea). Z. vergl. Physiol., Bd, 58, pp. 345–84.CrossRefGoogle Scholar
Wales, W.Clarac, F. & Laverack, M. S. 1971. Stress detection at the autotomy plane in the decapod Crustacea. I. Comparative anatomy of the receptors of the basi-ischiopodite region. Z. vergl. Physiol., Bd. 73, pp. 357–82.CrossRefGoogle Scholar
Wetzel, A. 1934. Chordotonalorgane bei Krebstieren (Caprella dentata). Zool. Anz., Bd. 105, pp. 125132.Google Scholar
Whitear, Mary 1962. The fine structure of crustacean proprioceptors. I. The chordotonal organs in the legs of the shore crab, Carcinus maenas. Phil. Trans. R. Soc., Ser. B, Vol. 245, pp. 291325.Google Scholar
Wiersma, C. A. G. 1959. Movement receptors in decapod Crustacea. J. mar. biol. Ass. U.K., Vol. 38, pp. 143–52.CrossRefGoogle Scholar